)已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請說明理由.
(1);(2).
【解析】本題考查求橢圓的標(biāo)準(zhǔn)方程的方法,直線和圓錐曲線的位置關(guān)系,兩個向量的數(shù)量積公式,求出和的值是解題的關(guān)鍵
解:⑴設(shè)橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921245043834846/SYS201206192126338289982595_DA.files/image017.png">,即,
所以.
即.
所以,解得.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921245043834846/SYS201206192126338289982595_DA.files/image012.png">為不同的兩點(diǎn),所以.
于是存在直線滿足條件,其方程為.………………………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市2012屆高二下學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分14分) 已知在平面直角坐標(biāo)系xoy中的一個橢圓,它的中心在原
點(diǎn),左焦
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動點(diǎn),求線段PA中點(diǎn)M的軌跡方程;
(3)過原點(diǎn)O的直線交橢圓于點(diǎn)B、C,求△ABC面積的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com