5.設(shè)x>0,y>0,z>0,且x2-4xy+9y2-z=0,則當(dāng)$\frac{z}{xy}$取得最小值時(shí),$\frac{6}{x}+\frac{4}{y}-\frac{6}{z}$的最大值為9.

分析 由題意可得z,代入$\frac{z}{xy}$結(jié)合基本不等式可得x=3y且z=6y2,代入$\frac{6}{x}+\frac{4}{y}-\frac{6}{z}$由二次函數(shù)的最值可得.

解答 解:∵x>0,y>0,z>0,且x2-4xy+9y2-z=0,
∴z=x2-4xy+9y2,∴$\frac{z}{xy}$=$\frac{x}{y}$+$\frac{9y}{x}$-4≥2$\sqrt{\frac{y}{x}•\frac{9y}{x}}$-4=2,
當(dāng)且僅當(dāng)$\frac{x}{y}$=$\frac{9y}{x}$即x=3y時(shí)取等號(hào),此時(shí)z=6y2,
∴$\frac{6}{x}+\frac{4}{y}-\frac{6}{z}$=$\frac{2}{y}$+$\frac{4}{y}$-$\frac{1}{{y}^{2}}$=-($\frac{1}{y}$-3)2+9,
由二次函數(shù)的知識(shí)可知當(dāng)$\frac{1}{y}$=3即y=$\frac{1}{3}$時(shí),
上式取到最大值9,
故答案為:9.

點(diǎn)評(píng) 本題考查基本不等式求最值,涉及二次函數(shù)區(qū)間的最值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\overrightarrow{a}$=(6,0),$\overrightarrow$=(-3,3),則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.45°B.60°C.135°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知不論a為何正實(shí)數(shù),y=ax+2-3的圖象恒過(guò)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)是(-2,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx.
(1)寫(xiě)出函數(shù)f(x)的遞增區(qū)間.
(2)在給出的方格紙上用五點(diǎn)作圖法作出f(x)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x-1)=x2+(2a-2)x+3-2a.
(1)若函數(shù)f(x)在[-5,5]上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
(2)求a的值,使f(x)在區(qū)間[-5,5]上的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.x2+y2-x+y+r=0表示一個(gè)圓,則r的取值范圍是(  )
A.r≤2B.r<2C.r<$\frac{1}{2}$D.r≤$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點(diǎn),過(guò)點(diǎn)M且斜率為k的直線l與橢圓C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn).
(1)若M(0,$\sqrt{5}$),橢圓與x軸正半軸、y軸正半軸交點(diǎn)分別為P、Q,問(wèn):是否存在常數(shù)k,使向量$\overrightarrow{OA}$+$\overrightarrow{OB}$與$\overrightarrow{pQ}$共線;
(2)若M為橢圓C的右焦點(diǎn),且$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求k的值;
(3)若M為橢圓C的左頂點(diǎn),Q為線段AB的垂直平分線與y軸的交點(diǎn),且$\overrightarrow{QA}•\overrightarrow{QB}$=4,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知兩個(gè)不同的平面α、β和兩條不重合的直線m、n,有下列四個(gè)命題:
①若m∥n,m⊥α,則n⊥α;       
②若m⊥α,m⊥β,則α∥β;
③若m∥n,n?α,則m∥α;        
④若m∥α,α∩β=n,則m∥n.
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知集合A=$\left\{{x\left|{\frac{x-3}{x}>0}\right.}\right\}$,集合B={x||2x-1|<3}.
(1)分別求集合A、B;
(2)求(∁RA)∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案