【題目】在中(圖1),,,為線段上的點(diǎn),且.以為折線,把翻折,得到如圖2所示的圖形,為的中點(diǎn),且,連接.
(1)求證:;
(2)求二面角的余弦值.
【答案】(1)證明見解析 (2)
【解析】
(1)根據(jù)條件先證明平面,然后結(jié)論可證.
(2) 以為原點(diǎn),、、所在的直線分別為、、 軸建立如圖所示的空間直角坐標(biāo)系,利用向量法求二面角的余弦值.
(1)證明:在圖1中有:,,所以
在中,,,
,所以
在圖2中有:在中,,為的中點(diǎn)
,在中,,,
,所以
翻折后仍有
又、平面,,
平面
平面,
所以
(2)解:由(1)可知、、兩兩互相垂直.
以為原點(diǎn),、、所在的直線分別為、、 軸建立如圖所示的空間直角坐標(biāo)系,
則,,
,
設(shè)平面的法向量為,則
,令,則,,
平面的法向量為
二面角的余弦值為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù), 為自然對數(shù)的底數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在三個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程;
(2)已知射線,若與圓交于點(diǎn)(異于點(diǎn)),與直線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;
②在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
③設(shè)隨機(jī)變量服從正態(tài)分布,若,則;
④對分類變量與的隨機(jī)變量的觀測值來說,越小,判斷“與有關(guān)系”的把握越大.其中正確的命題序號是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】足球是世界普及率最高的運(yùn)動(dòng),我國大力發(fā)展校園足球.為了解本地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,社會(huì)調(diào)查小組得到如下統(tǒng)計(jì)數(shù)據(jù):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色學(xué)校y(百個(gè)) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根據(jù)上表數(shù)據(jù),計(jì)算y與x的相關(guān)系數(shù)r,并說明y與x的線性相關(guān)性強(qiáng)弱.
(已知:,則認(rèn)為y與x線性相關(guān)性很強(qiáng);,則認(rèn)為y與x線性相關(guān)性一般;,則認(rèn)為y與x線性相關(guān)性較):
(2)求y關(guān)于x的線性回歸方程,并預(yù)測A地區(qū)2020年足球特色學(xué)校的個(gè)數(shù)(精確到個(gè)).
參考公式和數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個(gè)向量,滿足||=2,||=1,,的夾角為60°,若向量2t7與向量t的夾角為鈍角,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,.
(Ⅰ)若點(diǎn)為的中點(diǎn),求證:∥平面;
(Ⅱ)當(dāng)平面平面時(shí),求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com