已知點P(1,數(shù)學(xué)公式)是曲線f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<數(shù)學(xué)公式)的一個最高點,且f(9-x)=f(9+x),曲線區(qū)間(1,9)內(nèi)與x軸有唯一一個交點,求這個函數(shù)的解析式,并作出一個周期的圖象.

解:∵點P(1,)是曲線f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<)的一個最高點,
∴A=,
∵f(9-x)=f(9+x),曲線區(qū)間(1,9)內(nèi)與x軸有唯一一個交點,
∴x=9是曲線的一條對稱軸,且
∴T=16,
,ω=,

,∵|φ|<,
φ=
∴f(x)=sin(x+),
其圖象如圖所示:
分析:根據(jù)點P(1,)是曲線f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<)的一個最高點,可知A=,由f(9-x)=f(9+x)得函數(shù)的一條對稱軸方程為x=9,根據(jù)曲線區(qū)間(1,9)內(nèi)與x軸有唯一一個交點,可知函數(shù)的周期,因此可求得函數(shù)的解析式;利用五點法列表,描點,即可畫出函數(shù)的圖象.
點評:本題考查y=Asin(ωx+φ)的解析式的求法以及五點法作圖,根據(jù)題意求出周期是解題的關(guān)鍵,考查運算能力和作圖能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨沂二模)已知Ω={(x,y)|0≤x≤1,0≤y≤1},A是由直線y=0,x=a(0<a≤1)和曲線y=x3圍成的曲邊三角形的平面區(qū)域,若向區(qū)域Ω上隨機投一點P,點P落在區(qū)域A內(nèi)的概率是
1
64
,則a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圖形OAPBCD是由不等式組
0≤x≤e2
0≤y≤e
y≥lnx
,圍成的圖形,其中曲線段APB的方程為y=lnx(1≤x≤e2),P為曲線上的任一點.
(1)證明:直線OC與曲線段相切;
(2)若過P點作曲線的切線交圖形的邊界于M,N,求圖形被切線所截得的左上部分的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲
x2
9
-
y2
16
=1
的左、右兩個焦點,點P是雙曲線上一點,且|PF1|.|PF2|=32,求∠F1PF2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建師大附中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼担笄段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案