5.求與橢圓4x2+9y2=36有相同的焦距,且離心率為$\frac{\sqrt{5}}{5}$的橢圓的標(biāo)準(zhǔn)方程.

分析 設(shè)要求的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0).$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$.由橢圓4x2+9y2=36化為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,可得c.可得a,b2=a2-c2.即可得出.

解答 解:設(shè)要求的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0).$\frac{c}{a}$=$\frac{\sqrt{5}}{5}$.
由橢圓4x2+9y2=36化為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,可得c=$\sqrt{9-4}$=$\sqrt{5}$.
∴a=5,b2=a2-c2=20.
∴要求的橢圓標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{20}=1$.

點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)是定義在R上的奇函數(shù),其圖象是一條連續(xù)不斷的曲線,且$f(\frac{1}{2}+x)=f(\frac{1}{2}-x)$,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\frac{2x-3}{5x+2}$的值域?yàn)椋?∞,$\frac{2}{5}$)∪($\frac{2}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題“?x∈R,x2+1<0”的否定是?x∈R,使得x2+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.x,y∈R,A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$-$\frac{y}$=1,a>0,b>0},當(dāng)A∩B只有1個(gè)元素時(shí),a,b滿足的關(guān)系式為( 。
A.$\frac{1}{a}$+$\frac{1}$=1B.a2+b2=1C.$\frac{1}{a^2}$+$\frac{1}{b^2}$=1D.a+b=ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=(2m-1)x${\;}^{{m}^{2}-2}$是冪函數(shù),則 f(-2)=( 。
A.-1B.-2C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,sinA=sinB(sinc+cosc).
(1)求∠B;
(2)b=1,求S△ABC最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知一個(gè)幾何體的三視圖如圖所示,正視圖、俯視圖為直角三角形,側(cè)視圖是直角梯形,則它的體積等于$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x2-2mx+5在區(qū)間[-2,+∞)上是增函數(shù),則m的取值范圍是( 。
A.(-∞,-2]B.[-2,+∞)C.(-∞,-1]D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案