已知函數(shù)f(x)(x∈R,x)滿足ax·f(x)=2bx+f(x),a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).?

(1)求函數(shù)f(x)的表達(dá)式;?

(2)若數(shù)列{an}滿足a1=,an+1 =f(an),bn=,nN*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;?

(3)在(2)的條件下,證明a1b1+a2b2+…+anbn<1-,nN*.

(1)解析:由af(x)=2bx+f(x),x≠,a≠0,得f(x)=.?

f(1)=1,得a=2b+1.?

f(x)=2x只有一解,即,也就是2ax2-2(1+b)x=0(a≠0)只有一解,?

∴4(1+b)2-4×2a×0=0.∴b=-1.?

a=-1.故f(x)=.?

(2)解析:∵a1=,an+1=f(an),?

a2=f(a1)=f()=,a3=f(a2)=f()=,a4=f(a3)=f()=.?

猜想,an=(n∈N*).?

下面用數(shù)學(xué)歸納法證明:?

1°當(dāng)n=1時(shí),左邊=a1=,右邊=,?

∴命題成立.?

2°假設(shè)n=k時(shí),命題成立,即ak=;?

當(dāng)n=k+1時(shí),ak+1=f(ak)=?

=,?

∴當(dāng)n=k+1時(shí),命題成立.?

由1°、2°可得,當(dāng)n∈N*時(shí),有an=.?

bn= -1= -1= (n∈N*),∴ (n∈N*).?

∴{bn}是首項(xiàng)為,公比為的等比數(shù)列,其通項(xiàng)公式為bn=.?

(3)證明:∵anbn=an(-1)=1-an?

=1-,?

a1b1+a2b2+…+anbn=

(n∈N*).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請(qǐng)求出a的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長(zhǎng)葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案