【題目】設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列命題:①b=0,c>0時,方程f(x)=0只有一個實數(shù)根;②c=0時,y=f(x)是奇函數(shù);③方程f(x)=0至多有兩個實根.上述三個命題中所有正確命題的序號為 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系和極坐標(biāo)系的原點與極點重合, 軸正半軸與極軸重合,單位長度相同,在直角坐標(biāo)系下,曲線C的參數(shù)方程為為參數(shù))。
(1)在極坐標(biāo)系下,曲線C與射線和射線分別交于A,B兩點,求的面積;
(2)在直角坐標(biāo)系下,直線的參數(shù)方程為(為參數(shù)),求曲線C與直線的交點坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=bcosC+ csinB.
(1)若a=2,b= ,求c
(2)設(shè)函數(shù)y= sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機(jī)抽取16個零件,并測量其尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ⅰ)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計算得,其中為
抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機(jī)變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.
(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )
A. 當(dāng)時,“”是“”的充要條件
B. 當(dāng)時,“”是“”的充分不必要條件
C. 當(dāng)時,“”是“”的必要不充分條件
D. 當(dāng)時,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
(1)求{an}的通項公式;
(2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左焦點為,左準(zhǔn)線方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓于, 兩點.
①若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足, .求證: 為定值;
②若(為原點),求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com