【題目】已知二次函數(shù),現(xiàn)分別從集合中隨機(jī)取一個(gè)數(shù),得到有序數(shù)對(duì).

1)若,,求方程有實(shí)數(shù)根的概率;

2)若,,求函數(shù)在區(qū)間上是減函數(shù)的概率.

【答案】12

【解析】

1)列出所有的有序數(shù)對(duì),方程有實(shí)根求出滿足的實(shí)數(shù)對(duì),再利用古典概型的概率計(jì)算公式即可求解.

2)求出所有的基本事件構(gòu)成的平面區(qū)域?yàn)?/span>,再求出函數(shù)遞減滿足表示的基本事件構(gòu)成的平面區(qū)域,再利用幾何概型的概率計(jì)算公式即可求解.

1)由已知得,,所有的有序數(shù)對(duì)有

個(gè)

要使有實(shí)根,則滿足

可得滿足條件的有序數(shù)對(duì)有個(gè)

由古典概型概率公式可得所求概率為.

故方程有實(shí)根的概率為.

2)要使單調(diào)遞減,則需滿足,

由題意得所有的基本事件構(gòu)成的平面區(qū)域?yàn)?/span>

其面積為

設(shè)函數(shù)在區(qū)間上是減函數(shù)為事件,

則事件包含的基本事件構(gòu)成的平面區(qū)域?yàn)?/span>,

其面積為

由幾何概型概率公式可得.

故函數(shù)在區(qū)間上是減函數(shù)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某巨型摩天輪.其旋轉(zhuǎn)半徑50米,最高點(diǎn)距地面110米,運(yùn)行一周大約21分鐘.某人在最低點(diǎn)的位置坐上摩天輪,則第35分鐘時(shí)他距地面大約為( )米.

A. 75 B. 85 C. 100 D. 110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由的展開(kāi)式表示出來(lái),如:“1”表示一個(gè)球都不取、“”表示取出一個(gè)紅球,而“”用表示把紅球和藍(lán)球都取出來(lái).以此類(lèi)推,下列各式中,其展開(kāi)式可用來(lái)表示從5個(gè)有區(qū)別的紅球、5個(gè)無(wú)區(qū)別的藍(lán)球、5個(gè)無(wú)區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點(diǎn)分別是的中點(diǎn).

(1)證明:平面;

(2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,為菱形,,平面,,,.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解手機(jī)品牌的選擇是否和年齡的大小有關(guān),隨機(jī)抽取部分華為手機(jī)使用者和蘋(píng)果機(jī)使用者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表:

年齡 手機(jī)品牌

華為

蘋(píng)果

合計(jì)

30歲以上

40

20

60

30歲以下(含30歲)

15

25

40

合計(jì)

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根據(jù)表格計(jì)算得的觀測(cè)值,據(jù)此判斷下列結(jié)論正確的是(

A.沒(méi)有任何把握認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

B.可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

C.可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為手機(jī)品牌的選擇與年齡大小有關(guān)

D.可以在犯錯(cuò)誤的概率不超過(guò)0.01手機(jī)品牌的選擇與年齡大小無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)中國(guó)日?qǐng)?bào)網(wǎng)報(bào)道:2017年11月13日,TOP500發(fā)布的最新一期全球超級(jí)計(jì)算機(jī)500強(qiáng)榜單顯示,中國(guó)超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國(guó)產(chǎn)品牌處理器。為了了解國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度,某調(diào)查公司對(duì)兩種國(guó)產(chǎn)品牌處理器進(jìn)行了12次測(cè)試,結(jié)果如下(數(shù)值越小速度越快,單位是MIPS

測(cè)試1

測(cè)試2

測(cè)試3

測(cè)試4

測(cè)試5

測(cè)試6

測(cè)試7

測(cè)試8

測(cè)試9

測(cè)試10

測(cè)試11

測(cè)試12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

設(shè)分別表示第次測(cè)試中品牌A和品牌B的測(cè)試結(jié)果,記

)求數(shù)據(jù)的眾數(shù);

)從滿足的測(cè)試中隨機(jī)抽取兩次,求品牌A的測(cè)試結(jié)果恰好有一次大于品牌B的測(cè)試結(jié)果的概率;

(Ⅲ)經(jīng)過(guò)了解,前6次測(cè)試是打開(kāi)含有文字和表格的文件,后6次測(cè)試是打開(kāi)含有文字和圖片的文件.請(qǐng)你依據(jù)表中數(shù)據(jù),運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)這兩種國(guó)產(chǎn)品牌處理器打開(kāi)文件的速度進(jìn)行評(píng)價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù).

1)求實(shí)數(shù)a的值;

2)判斷該函數(shù)在定義域R上的單調(diào)性(不要求寫(xiě)證明過(guò)程).

3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)k的取值范圍;

4)設(shè)關(guān)于x的函數(shù)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案