已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi)總存在個實(shí)數(shù),,使得不等式成立,求的最大值.
,,m最大為6
解:(Ⅰ)設(shè)、兩點(diǎn)的橫坐標(biāo)分別為、,
, 切線的方程為:,
又切線過點(diǎn), 有,
即, ………………………………………………(1)
同理,由切線也過點(diǎn),得.…………(2)
由(1)、(2),可得是方程的兩根,
………………( * )
,
把( * )式代入,得,因此,函數(shù)的表達(dá)式為.
(Ⅱ)當(dāng)點(diǎn)、與共線時,,=,
即=,化簡,得,
,. 把(*)式代入(3),解得.
存在,使得點(diǎn)、與三點(diǎn)共線,且 .
(Ⅲ)解法:易知在區(qū)間上為增函數(shù),
,
則.
依題意,不等式對一切的正整數(shù)恒成立,
,
即對一切的正整數(shù)恒成立,.
, ,
.
由于為正整數(shù),.
又當(dāng)時,存在,,對所有的滿足條件.
因此,的最大值為.
解法:依題意,當(dāng)區(qū)間的長度最小時,得到的最大值,即是所求值.
,長度最小的區(qū)間為,
當(dāng)時,與解法相同分析,得,
解得.
由于m為整數(shù),,故m最大為6
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個實(shí)數(shù)(可以相同),使得不等,則m的最大值,為正整數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi)總存在個實(shí)數(shù),,使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得、與三點(diǎn)共線.若存在,求出的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi)總存在個實(shí)數(shù),,使得不等式成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省盧氏一高高三適應(yīng)性考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分) 已知函數(shù)和點(diǎn),過點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、.
(1)求證:為關(guān)于的方程的兩根;
(2)設(shè),求函數(shù)的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間內(nèi)總存在個實(shí)數(shù)(可以相同),使得不等式成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com