【題目】已知F1F2是橢圓Cab0)的左、右焦點,過橢圓的上頂點的直線x+y=1被橢圓截得的弦的中點坐標(biāo)為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過F1的直線l交橢圓于A,B兩點,當(dāng)△ABF2面積最大時,求直線l的方程.

【答案】(Ⅰ)y2=1;(Ⅱ)xy0x+y0.

【解析】

(Ⅰ)根據(jù)直線橢圓的過上頂點,得b=1,再利用點差法以及弦中點坐標(biāo)解得a2=3,即得橢圓方程;

(Ⅱ)先設(shè)直線l方程并與橢圓方程聯(lián)立,結(jié)合韋達定理,并以|F1F2|為底邊長求△ABF2面積函數(shù)關(guān)系式,在根據(jù)基本不等式求△ABF2面積最大值,進而確定直線l的方程.

(Ⅰ)直線x+y=1y軸的交于(0,1)點,∴b=1,

設(shè)直線x+y=1與橢圓C交于點Mx1,y1),Nx2,y2),

x1+x2,y1+y2,

1,1,

兩式相減可得x1x2)(x1+x2y1y2)(y1+y2)=0,

,

1,

解得a2=3,

∴橢圓C的方程為y2=1.

(Ⅱ)由(Ⅰ)可得F1,0),F2,0),設(shè)Ax3,y3),Bx4,y4),

可設(shè)直線l的方程x=my,將直線l的方程x=my代入y2=1,可得(m2+3y22my1=0

y3+y4,y3y4,

|y3y4|

|F1F2||y3y4|||y3y4|,

當(dāng)且僅當(dāng),即m1,△ABF2面積最大,

即直線l的方程為xy0x+y0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為

1)寫出曲線C1C2的直角坐標(biāo)方程;

2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】代表紅球,代表藍(lán)球,代表黑球,由加法原理及乘法原理,從1個紅球和1個藍(lán)球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,而“”用表示把紅球和藍(lán)球都取出來.以此類推,下列各式中,其展開式可用來表示從5個有區(qū)別的紅球、5個無區(qū)別的藍(lán)球、5個無區(qū)別的黑球中取出若干個球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在生活中,我們?吹礁鞣N各樣的簡易遮陽棚.現(xiàn)有直徑為的圓面,在圓周上選定一個點固定在水平的地面上,然后將圓面撐起,使得圓面與南北方向的某一直線平行,做成簡易遮陽棚.設(shè)正東方向射出的太陽光線與地面成角,若要使所遮陰影面的面積最大,那么圓面與陰影面所成角的大小為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點的直線l與拋物線交于A,B兩點,設(shè)點M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代教育要求學(xué)生掌握六藝,即禮、樂、射、御、書、數(shù).某校為弘揚中國傳統(tǒng)文化,舉行有關(guān)六藝的知識競賽.甲、乙、丙三位同學(xué)進行了決賽.決賽規(guī)則:決賽共分場,每場比賽的第一名、第二名、第三名的得分分別為,選手最后得分為各場得分之和,決賽結(jié)果是甲最后得分為分,乙和丙最后得分都為分,且乙在其中一場比賽中獲得第一名,現(xiàn)有下列說法:

①每場比賽第一名得分分;

②甲可能有一場比賽獲得第二名;

③乙有四場比賽獲得第三名;

④丙可能有一場比賽獲得第一名.

則以上說法中正確的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(甲),是邊長為的等邊三角形,點分別為的中點,將沿折成四棱錐,使,如圖(乙).

1)求證:平面

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某藥業(yè)公司統(tǒng)計了2010-2019年這10年某種疾病的患者人數(shù),結(jié)論如下:該疾病全國每年的患者人數(shù)都不低于100萬,其中有3年的患者人數(shù)低于200萬,有6年的患者人數(shù)不低于200萬且低于300萬,有1年的患者人數(shù)不低于300.

1)藥業(yè)公司為了解一新藥品對該疾病的療效,選擇了200名患者,隨機平均分為兩組作為實驗組和對照組,實驗結(jié)束時,有顯著療效的共110人,實驗組中有顯著療效的比率為70.請完成如下的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99.9%把握認(rèn)為該藥品對該疾病有顯著療效;

實驗組

對照組

合計

有顯著療效

無顯著療效

合計

200

2)藥業(yè)公司最多能引進3條新藥品的生產(chǎn)線,據(jù)測算,公司按如下條件運行生產(chǎn)線:

該疾病患者人數(shù)(單位:萬)

最多可運行生產(chǎn)線數(shù)

1

2

3

每運行一條生產(chǎn)線,可產(chǎn)生年利潤6000萬元,沒運行的生產(chǎn)線毎條每年要虧損1000萬元.根據(jù)該藥業(yè)公司這10年的統(tǒng)計數(shù)據(jù),將患者人數(shù)在以上三段的頻率視為相應(yīng)段的概率、假設(shè)各年的患者人數(shù)相互獨立.欲使該藥業(yè)公司年總利潤的期望值達到最大,應(yīng)引進多少條生產(chǎn)線?

附:參考公式:,其中.

0.05

0.025

0.010

0.001

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是t為參數(shù)),直線l與曲線C相交于A,B兩點.

1)求的長;

2)求點A,B兩點的距離之積.

查看答案和解析>>

同步練習(xí)冊答案