分析 利用正弦定理可得$\frac{a+c}$=$\frac{sinA+sinC}{sinB}$,結(jié)合已知角的大小和兩角和的正弦函數(shù)公式即可得解.
解答 解:∵B=30°,C=45°,
∴A=180°-C-B=105°,
∵由正弦定理可得:a=2RsinA,b=2RsinB,c=2RsinC,
∴$\frac{a+c}$=$\frac{sinA+sinC}{sinB}$=$\frac{sin105°+sin45°}{sin30°}$=$\frac{sin(45°+30°)+\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\frac{\frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}×\frac{1}{2}+\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\frac{\sqrt{6}+3\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{6}+3\sqrt{2}}{2}$.
點評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | (2,+∞) | C. | [1,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $-\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com