【題目】如圖,⊙O過(guò)平行四邊形ABCT的三個(gè)頂點(diǎn)B,C,T,且與AT相切,交AB的延長(zhǎng)線于點(diǎn)D.

(1)求證:AT2=BTAD;
(2)E、F是BC的三等分點(diǎn),且DE=DF,求∠A.

【答案】
(1)證明:因?yàn)椤螦=∠TCB,∠ATB=∠TCB,

所以∠A=∠ATB,所以AB=BT.

又AT 2=ABAD,所以AT 2=BTAD


(2)解:取BC中點(diǎn)M,連接DM,TM.

由(1)知TC=TB,所以TM⊥BC.

因?yàn)镈E=DF,M為EF的中點(diǎn),所以DM⊥BC.

所以O(shè),D,T三點(diǎn)共線,DT為⊙O的直徑.

所以∠ABT=∠DBT=90°.

所以∠A=∠ATB=45°.


【解析】(1)證明AB=BT,結(jié)合切割線定理,即可證明結(jié)論;(2)取BC中點(diǎn)M,連接DM,TM,可得O,D,T三點(diǎn)共線,DT為⊙O的直徑,即可求∠A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0)的最小正周期為π,則該函數(shù)的圖象(
A.關(guān)于直線x= 對(duì)稱(chēng)
B.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
C.關(guān)于直線x=﹣ 對(duì)稱(chēng)
D.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

,求函數(shù)在區(qū)間上的取值范圍;

,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.

若對(duì)任意的,,都有,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),武漢市出現(xiàn)了非常嚴(yán)重的霧霾天氣,而燃放煙花爆竹會(huì)加重霧霾,是否應(yīng)該全面禁放煙花爆竹已成為人們議論的一個(gè)話題.武漢市環(huán)保部門(mén)就是否贊成禁放煙花爆竹,對(duì)400位老年人和中青年市民進(jìn)行了隨機(jī)問(wèn)卷調(diào)查,結(jié)果如下表:

贊成禁放

不贊成禁放

合計(jì)

老年人

60

140

200

中青年人

80

120

200

合計(jì)

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握認(rèn)為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關(guān)?請(qǐng)說(shuō)明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再?gòu)倪@13人中隨機(jī)的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費(fèi)的情況.假設(shè)一位老年人花費(fèi)500元,一位中青年人花費(fèi)1000元,用X表示它們?cè)跓熁ū裆舷M(fèi)的總費(fèi)用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).
(I)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C有唯一的公共點(diǎn),求角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長(zhǎng)、廣告播放時(shí)長(zhǎng)、收視人次如下表所示:

連續(xù)劇播放時(shí)長(zhǎng)(分鐘)

廣告播放時(shí)長(zhǎng)(分鐘)

收視人次(萬(wàn))

70

5

60

60

5

25

已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用x,y表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù).(13分)
(I)用x,y列出滿(mǎn)足題目條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(II)問(wèn)電視臺(tái)每周播出甲、乙兩套連續(xù)劇各多少次,才能使總收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an= ,n∈N*
(1)求數(shù)列{ }的前n項(xiàng)和Sn
(2)設(shè)bn=anan+1 , 求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案