【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過的人與性別有關(guān);
平均車速超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(Ⅱ )以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)有的把握,(Ⅱ) ,分布列見解析
【解析】試題分析: (Ⅰ)先根據(jù)題意填寫表格(注意對應關(guān)系),再代入公式,并將計算結(jié)果與參考數(shù)據(jù)進行對照,確定把握率范圍,進而判段是否有的把握.(Ⅱ)根據(jù)頻率估計概率得:駕駛員為女性且車速不超過的車輛的概率為.由于隨機變量服從二項分布,根據(jù)公式 可得隨機變量對應的概率,列表可得分布列,根據(jù)可得數(shù)學期望.
試題解析:解:(Ⅰ)
平均車數(shù)超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | 20 | 10 | 30 |
女性駕駛員人數(shù) | 5 | 15 | 20 |
合計 | 25 | 25 | 50 |
,
所以有的把握認為平均車速超過與性別有關(guān).
(Ⅱ)根據(jù)樣本估計總體的思想,從高速公路上行駛的大量家用轎車中隨即抽取1輛,駕駛員為女性且車速不超過的車輛的概率為.
的可能取值為,且,
,
,
分布列為:
0 | 1 | 2 | 3 | |
.
或.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的極坐標方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點P,Q.
(Ⅰ)寫出圓C的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長|PQ|=4,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為.設(shè)過點的直線與橢圓相交于不同兩點, 周長為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點,證明:當直線變化時,總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:
①函數(shù)的定義域是;②函數(shù)的值域是;
③函數(shù)在上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)數(shù)及是否屬于集合A?并簡要說明理由;
(2)對于(1)中你認為屬于集合A的函數(shù),不等式
是否對于任意的恒成立?若成立,請給出證明;若不成立,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù), ,且函數(shù)的圖象關(guān)于直線對稱。
(1)求函數(shù)在區(qū)間上最大值;
(2)設(shè),不等式在上恒成立,求實數(shù)的取值范圍;
(3)設(shè)有唯一零點,求實數(shù)的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com