【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調增函數(shù),求a的取值范圍;
(2)設函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=ax2﹣x+2a﹣1(a>0)的圖象是開口朝上,且以直線x= 為對稱軸的拋物線,

若f(x)在區(qū)間[1,2]為單調增函數(shù)

,

解得:


(2)解:①當0< <1,即a> 時,f(x)在區(qū)間[1,2]上為增函數(shù),

此時g(a)=f(1)=3a﹣2

②當1≤ ≤2,即 時,f(x)在區(qū)間[1, ]是減函數(shù),在區(qū)間[ ,2]上為增函數(shù),

此時g(a)=f( )=

③當 >2,即0<a< 時,f(x)在區(qū)間[1,2]上是減函數(shù),

此時g(a)=f(2)=6a﹣3

綜上所述:


(3)解:對任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max,

由(2)知,f(x)min=g(a)

又因為函數(shù) ,

所以函數(shù)h(x)在[1,2]上為單調減函數(shù),所以 ,

①當 時,由g(a)≥h(x)max得: ,解得 ,(舍去)

②當 時,由g(a)≥h(x)max得: ,即8a2﹣2a﹣1≥0,

∴(4a+1)(2a﹣1)≥0,解得

所以

③當 時,由g(a)≥h(x)max得: ,解得

所以a

綜上所述:實數(shù)a的取值范圍為


【解析】(1)若f(x)在區(qū)間[1,2]為單調增函數(shù),則根據(jù)題意a>0,只需二次函數(shù)的對稱軸在區(qū)間的左側即可,列出不等式可解得a的取值范圍,(2)分類討論給定區(qū)間與對稱軸的關系,分析出各種情況下g(x)的表達式,綜合討論結果,可得答案,(3)不等式f(x1)≥h(x2)恒成立,

即f(x)min≥h(x)max,分類討論各種情況下實數(shù)a的取值,綜合討論結果,可得答案.

【考點精析】關于本題考查的函數(shù)的最值及其幾何意義和二次函數(shù)的性質,需要了解利用二次函數(shù)的性質(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調性的判斷函數(shù)的最大(。┲;增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,g(x)=﹣x﹣ln(﹣x)其中a≠0,
(1)若x=1是函數(shù)f(x)的極值點,求實數(shù)a的值及g(x)的單調區(qū)間;
(2)若對任意的x1∈[1,2],x2∈[﹣3,﹣2]使得f(x1)≥g(x2)恒成立,且﹣2<a<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,將y=f(x)的圖象向右平移 個單位長度后得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)y=g(x)的解析式;
(2)在△ABC中,角A,B,C滿足2sin2 =g(C+ )+1,且其外接圓的半徑R=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某媒體對“男女同齡退休”這一公眾關注的問題進行 了民意調査,右表是在某單位得到的數(shù)據(jù)(人數(shù)):

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25

附表:

P(K2≥K)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1 )能否有90%以上的把握認為對這一問題的看法與性別有關?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握認為對這一問題的看法與性別有關
(1)進一步調查:(。⿵馁澩澳信g退休”16人中選出3人進行陳述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率; (ⅱ)從反對“男女同齡退休”的9人中選出3人進行座談,設參加調査的女士人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設A、B、C為銳角△ABC的三個內角,M=sinA+sinB+sinC,N=cosA+2cosB,則(
A.M<N
B.M=N
C.M>N
D.M、N大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R,(ω>0,﹣ <φ< )的部分圖象如圖所示.
(Ⅰ)確定A,ω,φ的值,并寫出函數(shù)f(x)的解析式;
(Ⅱ)描述函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經過怎樣的變換而得到;
(Ⅲ)若f( )= <α< ),求tan2(α﹣ ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AA1=2AB=2BC,E,F(xiàn),E1分別是棱AA1 , BB1 , A1B1的中點.
(1)求證:CE∥平面C1E1F;
(2)求證:平面C1E1F⊥平面CEF.

查看答案和解析>>

同步練習冊答案