已知函數(shù)

(Ⅰ) 求的單調(diào)區(qū)間;

(Ⅱ) 求所有的實(shí)數(shù),使得不等式恒成立.

 

【答案】

(Ⅰ)當(dāng)a≤0時, f (x)的增區(qū)間是(-∞,+∞);當(dāng)a>0時,f (x)的增區(qū)間是(-∞,-]、[,+∞),f (x)的減區(qū)間是[-,];(Ⅱ)

【解析】

試題分析:(Ⅰ)本小題首先求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)求解原函數(shù)的單調(diào)區(qū)間,注意參數(shù)的范圍,通過分情況討論可以分別得出函數(shù)的增減區(qū)間;(Ⅱ)根據(jù)第一問可知函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可以求得函數(shù)在區(qū)間上的的最大值和最小值,然后讓,即可解得參數(shù)的取值范圍.

試題解析:(Ⅰ)  f ′(x)=3x2-3a.

當(dāng)a≤0時,f ′(x)≥0恒成立,故f (x)的增區(qū)間是(-∞,+∞).

當(dāng)a>0時,由f ′(x)>0,得    x<- 或 x>,

故f (x)的增區(qū)間是(-∞,-]和[,+∞),f (x)的減區(qū)間是[-,].     7分

(Ⅱ) 當(dāng)a≤0時,由(Ⅰ)知f (x)在[0,]上遞增,且f (0)=1,此時無解.

當(dāng)0<a<3時,由(Ⅰ)知f (x)在[0,]上遞減,在[]上遞增,

所以f (x)在[0,]上的最小值為f ()=1-2a

所以

所以a=1.

當(dāng)a≥3時,由(Ⅰ)知f (x)在[0,]上遞減,又f (0)=1,所以

f ()=3-3a+1≥-1,

解得a≤1+,此時無解.

綜上,所求的實(shí)數(shù)a=1.     15分

考點(diǎn):1.導(dǎo)數(shù)判斷單調(diào)性;2.解不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函數(shù)f(x)的周期T和單調(diào)遞增區(qū)間;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
,
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=asinx+bcosx+c的圖象上有一個最低點(diǎn)(
11π
6
,-1)

(Ⅰ)如果x=0時,y=-
3
2
,求a,b,c.
(Ⅱ)如果將圖象上每個點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的
3
π
,然后將所得圖象向左平移一個單位得到y(tǒng)=f(x)的圖象,并且方程f(x)=3的所有正根依次成為一個公差為3的等差數(shù)列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
(Ⅰ)用xn表示xn+1;
(Ⅱ)若x1=4,記an=lg
xn+2xn-2
,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步練習(xí)冊答案