把半徑為r的四個小球全部放入一個大球內(nèi),則大球半徑的最小值為
 
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:當四個小球彼此相外切,與大球內(nèi)切時,大球半徑的最小,此時四個小球的球心為邊長為2r的正四面體的四個頂點,大球半徑的最小值為正四面體外接球半徑加小球半徑.
解答: 解:當四個小球彼此相外切,與大球內(nèi)切時,大球半徑的最小,
如圖所示:
四個小球,三個在下,一個在上,四個球心連線成正四面體,
該正四面體的邊長為2r,
則正四面體的高為
2
6
3
r,
則正四面體的外接球半徑為
6
2
r,
∴大球半徑最小為:(1+
6
2
)r,
故答案為:(1+
6
2
)r
點評:本題考查的知識點是球的體積與表面積,其中分析出當四個小球彼此相外切,與大球內(nèi)切時,大球半徑的最小,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點O,焦點在x軸上,離心率為
1
2
,右焦點到到右頂點的距離為1.
(1)求橢圓C的標準方程;
(2)是否存在與橢圓C交于A,B兩點的直線l:y=kx+m(k∈R),使得|
OA
+2
OB
|=|
OA
-2
OB
|成立?若存在,求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為某地區(qū)2012年1月到2013年1月鮮蔬價格指數(shù)的變化情況:

記△x=本月價格指數(shù)-上月價格指數(shù).規(guī)定:△x>0時,稱本月價格指數(shù)環(huán)比增長;△x<0時,稱本月價格指數(shù)環(huán)比下降;當△x=0時,稱本月價格指數(shù)環(huán)比持平.
(Ⅰ)比較2012年上半年與下半年鮮蔬價格指數(shù)月平均值的大。ú灰笥嬎氵^程);
(Ⅱ)直接寫出從2012年2月到2013年1月的12個月中價格指數(shù)環(huán)比下降的月份.若從這12個月中隨機選擇連續(xù)的兩個月進行觀察,求所選兩個月的價格指數(shù)都環(huán)比下降的概率;
(Ⅲ)由圖判斷從哪個月開始連續(xù)三個月的價格指數(shù)方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=asinx+b(a<0)的最大值為3,最小值為2,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個總體由編號為01,02,…,49,50的50個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第2行的第3列的數(shù)0開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為
 

78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  35 80 20 36 23  48 69 97 28 01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖(單位cm)如圖所示,則此幾何體的體積是
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入的a=5,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-tan(x+
π
3
)+2定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ<0,tanθ>0,則
1-sin2θ
cosθ
化簡的結(jié)果為(  )
A、1B、-1
C、±1D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案