4.“x-1>0”是“x2-1>0”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 解不等式根據(jù)充分必要條件的定義以及集合的包含關(guān)系判斷即可.

解答 解:由x2-1>0,解得:x>1或x<-1,
故x-1>0”是“x2-1>0”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:方程$\frac{{x}^{2}}{2m-1}$+$\frac{{y}^{2}}{m-1}$=1表示的曲線是焦點(diǎn)在x軸的雙曲線;命題q:關(guān)于m的不等式m2-(2a+1)m+a(a+1)≤0成立.
(1)若a=$\frac{1}{2}$,且p∧q為真,求實(shí)數(shù)m的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.方程$lnx-\frac{1}{x}=0$的實(shí)數(shù)根的所在區(qū)間為( 。
A.(3,4)B.(2,3)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{2}^{x}(-2<x<3)}\\{lnx(x≥3)}\end{array}\right.$,則f(f(-2))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在三棱錐P-ABC中,D為底面ABC的邊AB上一點(diǎn),M為底面ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{AD}=\frac{3}{4}\overrightarrow{AB}$,$\overrightarrow{AM}=\overrightarrow{AD}+\frac{3}{5}\overrightarrow{BC}$,則三棱錐P-AMD與三棱錐P-ABC的體積比 $\frac{{{V_{P-AMD}}}}{{{V_{P-ABC}}}}$為( 。
A.$\frac{9}{25}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.m,n是空間兩條不同直線,α,β是兩個(gè)不同平面.有以下四個(gè)命題:
①若m∥α,n∥β且α∥β,則m∥n; 
②若m⊥α,n⊥β且α⊥β,則m⊥n;
③若m⊥α,n∥β且α∥β,則m⊥n; 
④若m∥α,n⊥β且α⊥β,則m∥n.
其中真命題的序號(hào)是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知正方體ABCD-A1B1C1D1,E,F(xiàn),G,H分別是AD1、CD1、BC、AB的中點(diǎn).
(Ⅰ)求證:E,F(xiàn),G,H四點(diǎn)共面;
(Ⅱ)求證:GH⊥B1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,輸出的k值為(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知a≥2,函數(shù)F(x)=min{x3-x,a(x+1)},其中min{p,q}=$\left\{\begin{array}{l}{p,p≤q}\\{q,p>q}\end{array}\right.$.
(1)若a=2,求F(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)F(x)在[-1,1]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案