橢圓的左右焦點(diǎn)分別為,過焦點(diǎn)的直線交該橢圓于兩點(diǎn),若的內(nèi)切圓面積為,兩點(diǎn)的坐標(biāo)分別為,則的值為           。

試題分析:由橢圓,所以a=4,b=3,∴c=,左、右焦點(diǎn)F1(-,0)、F2,0),△ABF2的內(nèi)切圓面積為π,則內(nèi)切圓的半徑為r=1,而△ABF2的面積=△AF1F2的面積+△BF1F2的面積=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=|y2-y1|(A、B在x軸的上下兩側(cè))
又△ABF2的面積═×|r(|AB|+|BF2|+|F2A|=×(2a+2a)=2a=8.
所以|y2-y1|=8, |y2-y1|=,故答案為。
點(diǎn)評(píng):解決該試題的關(guān)鍵是先根據(jù)橢圓方程求得a和c,及左右焦點(diǎn)的坐標(biāo),進(jìn)而根據(jù)三角形內(nèi)切圓面積求得內(nèi)切圓半徑,進(jìn)而根據(jù)△ABF2的面積=△AF1F2的面積+△BF1F2的面積求得△ABF2的面積= |y2-y1|進(jìn)而根據(jù)內(nèi)切圓半徑和三角形周長(zhǎng)求得其面積,建立等式求得|y2-y1|的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別為,
上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且

(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點(diǎn)的圓上的點(diǎn),到直線的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),線段的中垂線與軸相交于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為(    )
A.10B.8C.6D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是方程x=0的兩個(gè)實(shí)根,那么過點(diǎn))的直線與橢圓的位置關(guān)系是
A.相交B.相切C.相交或相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線 和橢圓,則直線和橢圓相交有(   )
A.兩個(gè)交點(diǎn)B.一個(gè)交點(diǎn)C.沒有交點(diǎn)D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓上一點(diǎn)和兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形的最大面積為1,則長(zhǎng)軸長(zhǎng)的最小值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以C:的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程為          

查看答案和解析>>

同步練習(xí)冊(cè)答案