【題目】如圖,已知點(diǎn)E是圓心為O1半徑為2的半圓弧上從點(diǎn)B數(shù)起的第一個(gè)三等分點(diǎn),點(diǎn)F是圓心為O2半徑為1的半圓弧的中點(diǎn),AB、CD分別是兩個(gè)半圓的直徑,O1O2=2,直線O1O2與兩個(gè)半圓所在的平面均垂直,直線AB、DC共面.
(1)求三棱錐D﹣ABE的體積;
(2)求直線DE與平面ABE所成的角的正切值;
(3)求直線AF與BE所成角的余弦值.
【答案】(1)(2)(3)
【解析】
由題意知,即為所求三棱錐的高,代入三棱錐的體積公式求解即可;
以O1為坐標(biāo)原點(diǎn),,,分別為x、y、z軸的正向,建立空間直角坐標(biāo)系如圖所示,利用空間向量法分別求出面ABE的法向量和向量的坐標(biāo),向量與向量的夾角余弦即為直線DE與平面ABE所成的角的正弦值,進(jìn)而求出正切值即可;
以O1為坐標(biāo)原點(diǎn),,,分別為x、y、z軸的正向,建立空間直角坐標(biāo)系如圖所示,利用空間向量法,向量所成角的余弦值的絕對(duì)值即為所求.
(1)∵,O1E=2,
∴,
∵直線O1O2與兩個(gè)半圓所在的平面均垂直,直線AB、DC共面,
∴三棱錐D﹣ABE的高等于O1O2=2,
所以.
(2)以O1為坐標(biāo)原點(diǎn),,,分別為x、y、z軸的正向
建立空間直角坐標(biāo)系如圖所示:
則,D(-1,0,2),E,
,
由題意可知,平面ABE的一個(gè)法向量為(0,0,1),
設(shè)直線DE與平面ABE所成的角為θ,
則sinθ,
因?yàn)?/span>.∴,
所以即為所求.
(3)以O1為坐標(biāo)原點(diǎn),,,分別為x、y、z軸的正向,
建立空間直角坐標(biāo)系如圖所示:
則A(﹣2,0,0),B(2,0,0),E,F(0,1,2),
所以(2,1,2),,
設(shè)直線AF與BE所成角為θ,
則cosθ.
∴直線AF與BE所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=axex﹣lnx﹣x.
(Ⅰ)若f(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)已知a=1,若對(duì)任意的x>0,均有f(x)>cx2﹣2x+1成立,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于不重合的兩個(gè)平面α與β,給定下列條件:
①存在平面γ,使得α,β都平行于γ
②存在兩條不同的直線l,m,使得lβ,mβ,使得l∥α,m∥α
③α內(nèi)有不共線的三點(diǎn)到β的距離相等;
④存在異面直線l,m,使得l∥α,l∥β,m∥α,m∥β.
其中,可以判定α與β平行的條件有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究玉米品種對(duì)產(chǎn)量的 ,某農(nóng)科院對(duì)一塊試驗(yàn)田種植的一批玉米共10000株的生長(zhǎng)情況進(jìn)行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計(jì)結(jié)果如下:
高莖 | 矮莖 | 總計(jì) | |
圓粒 | 11 | 19 | 30 |
皺粒 | 13 | 7 | 20 |
總計(jì) | 24 | 26 | 50 |
(1)現(xiàn)采用分層抽樣的方法,從該樣本所含的圓粒玉米中取出6株玉米,再?gòu)倪@6株玉米中隨機(jī)選出2株,求這2株之中既有高莖玉米又有矮莖玉米的概率;
(2)根據(jù)玉米生長(zhǎng)情況作出統(tǒng)計(jì),是否有95%的把握認(rèn)為玉米的圓粒與玉米的高莖有關(guān)?
附:
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù),.
(1)求的單調(diào)區(qū)間
(2)討論零點(diǎn)的個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經(jīng)濟(jì)效益而沒(méi)有樹(shù)立環(huán)保意識(shí),把大量的污染物排放到空中與地下,嚴(yán)重影響了人們的正常生活,為此政府進(jìn)行強(qiáng)制整治,對(duì)不合格企業(yè)進(jìn)行關(guān)閉,整頓,另一方面進(jìn)行大量的綠化來(lái)凈化和吸附污染物,通過(guò)幾年的整治,環(huán)境明顯得到好轉(zhuǎn),針對(duì)政府這一行為,老百姓大大點(diǎn)贊.
(1)某機(jī)構(gòu)隨機(jī)訪問(wèn)50名居民,這50名居民對(duì)政府的評(píng)分(滿分100分)如下表:
分?jǐn)?shù) | ||||||
頻數(shù) | 2 | 3 | 11 | 14 | 11 | 9 |
請(qǐng)?jiān)诖痤}卡上作出居民對(duì)政府的評(píng)分頻率分布直方圖:
(2)當(dāng)?shù)丨h(huán)保部門(mén)隨機(jī)抽測(cè)了2019年6月的空氣質(zhì)量指數(shù),其數(shù)據(jù)如下表:
空氣質(zhì)量指數(shù) | 0—50 | 50—100 | 100—150 | 150—200 |
天數(shù) | 2 | 18 | 8 | 2 |
用空氣質(zhì)量指數(shù)的平均值作為該月空氣質(zhì)量指數(shù)級(jí)別,求出該月空氣質(zhì)量指數(shù)級(jí)別為第幾級(jí)?(同一組數(shù)據(jù)用該組數(shù)據(jù)的區(qū)間中點(diǎn)值作代表,將頻率視為概率)(相關(guān)知識(shí)參見(jiàn)附表)
(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據(jù)歷史經(jīng)驗(yàn),凡遇到空氣輕度污染,小李每天會(huì)服用有關(guān)藥品花費(fèi)50元,遇到中度污染每天服藥的費(fèi)用達(dá)到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費(fèi)了5000元,試估計(jì)2019年11月份(參考(2)中表格數(shù)據(jù))小李比以前少花了多少錢(qián)的醫(yī)藥費(fèi)?
附:
空氣質(zhì)量指數(shù) | 0-50 | 50-100 | 100-150 | 150-200 | 200-300 | >300 |
空氣質(zhì)量指數(shù)級(jí)別 | I | II | III | IV | V | VI |
空氣質(zhì)量指數(shù) | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,過(guò)點(diǎn)的直線與拋物線交于 兩點(diǎn),又過(guò)兩點(diǎn)分別作拋物線的切線,兩條切線交于點(diǎn)。
(1)證明:直線的斜率之積為定值;
(2)求面積的最小值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com