如圖,在平面直角坐標系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.

(1)求證:A、C、T三點共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標.
(1)見解析(2)橢圓方程為+y2=1.P點坐標為
(1)證明:設(shè)橢圓方程為=1(a>b>0)①,則A(0,b),B(0,-b),T.
AT:=1②,BF:=1③,解得交點C,代入①得
=1,滿足①式,則C點在橢圓上,即A、C、T
三點共線.
(2)解:過C作CE⊥x軸,垂足為E,則△OBF∽△ECF.
=3,CE=b,EF=c,則C,代入①得=1,∴a2=2c2,b2=c2.設(shè)P(x0,y0),則x0+2=2c2.此時C,AC=c,S△ABC·2c·c2
直線AC的方程為x+2y-2c=0,P到直線AC的距離為d=,
S△APCd·AC=··c=·c.只須求x0+2y0的最大值,
(解法1)∵(x0+2y0)2+4+2·2x0y0+4+2()=3(+2)=6c2,∴x0+2y0c.當且僅當x0=y(tǒng)0c時,(x0+2y0)maxc.
(解法2)令x0+2y0=t,代入+2=2c2得(t-2y0)2+2-2c2=0,即6-4ty0+t2-2c2=0.Δ=(-4t)2-24(t2-2c2)≥0,得t≤c.當t=c,代入原方程解得x0=y(tǒng)0c.
∴四邊形的面積最大值為c2c2c2,∴c2=1,a2=2,b2=1,此時橢圓方程為+y2=1.P點坐標為.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知焦點在軸上的橢圓經(jīng)過點,直線
交橢圓于不同的兩點.

(1)求該橢圓的標準方程;
(2)求實數(shù)的取值范圍;
(3)是否存在實數(shù),使△是以為直角的直角三角形,若存在,求出的值,若不存,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓以雙曲線的實軸為短軸、虛軸為長軸,且與拋物線交于兩點.
(1)求橢圓的方程及線段的長;
(2)在圖像的公共區(qū)域內(nèi),是否存在一點,使得的弦的弦相互垂直平分于點?若存在,求點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的焦點垂直于軸的弦長為,則雙曲線的離心率的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓E:=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=.過F1的直線交橢圓于A、B兩點,且△ABF2的周長為8.

(1)求橢圓E的方程;
(2)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:在坐標平面內(nèi)是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的離心率為,與過右焦點F且斜率為k(k>0)的直線相交于A、B兩點.若=3,則k=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線C與橢圓=1有相同的焦點,直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的左,右焦點分別為,焦距為,若直線與橢圓的一個交點滿足,則該橢圓的離心率為              .

查看答案和解析>>

同步練習冊答案