用適當(dāng)?shù)姆椒ū硎静坏仁?x-5<3的解集.
考點(diǎn):其他不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:先解不等式,再利用描述法表示其解集即可.
解答: 解:由4x-5<3得:x<2,
用描述法表示其解集為:{x|x<2}.
點(diǎn)評(píng):本題考查用適當(dāng)?shù)姆椒ū硎静坏仁絘x<b(a≠0)的解集,著重考查對(duì)列舉法與描述法的理解與應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=[x]-1,x∈(0,+∞)(其中[x]表示不超過(guò)x的最大整數(shù),如[
1
3
]=0,[
6
3
]=1,[2]=2),則方程f(x)-log2x=0的根的個(gè)數(shù)是( 。
A、1B、2C、3D、無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、12
B、16
C、24+4
5
D、8+
8
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論方程-|-x+3|+2=a根的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C1
x2
a2
+
y2
b2
=1的一個(gè)頂點(diǎn)坐標(biāo)為A(
2
,0),且拋物線y=
1
4
x2的焦點(diǎn)是橢圓C1的另一個(gè)頂點(diǎn).
(l)求橢圓C1的方程;
(2)①若直線l:y=kx+m同時(shí)與橢圓C1和曲線C2:x2+y2=
4
3
相切,求直線l的方程.
②若直線l:y=kx+m與橢圓C1交于M,N,且直線OM的斜率是kOM與直線ON的斜率kON滿足kOM+kON=4k(k≠0),求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)從3名語(yǔ)文老師,4名數(shù)學(xué)老師中選派3人組成一個(gè)“支教講學(xué)團(tuán)”,且這兩個(gè)學(xué)科都至少有1人,則不同的選派方法共有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)對(duì)高二甲、乙兩個(gè)同類(lèi)班級(jí)進(jìn)行加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練對(duì)提高數(shù)學(xué)應(yīng)用題得分率作用的試驗(yàn),其中甲班為實(shí)驗(yàn)班(常規(guī)教學(xué),無(wú)額外訓(xùn)練),在試驗(yàn)前的測(cè)試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用試題測(cè)試的平均成績(jī)(均取整數(shù))如表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人數(shù))36111812
乙班(人數(shù))39131510
現(xiàn)規(guī)定平均成績(jī)?cè)?0分以上(不含80分)的為優(yōu)秀.
(1)試分析估計(jì)兩個(gè)班級(jí)的優(yōu)秀率;
(2)由以上統(tǒng)計(jì)列出2×2列聯(lián)表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
3
,直線l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作斜率存在且不為0的兩條不同的直線l1,l2,使得l1,l2與橢圓都相切,試判斷l(xiāng)1與l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e為
3
5
,且橢圓C的一個(gè)焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(2,0),點(diǎn)Q是橢圓上一點(diǎn),當(dāng)|MQ|最小時(shí),試求點(diǎn)Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長(zhǎng)軸(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)斜率為k的直線l交橢圓與A,B兩點(diǎn),若|PA|2+|PB|2的值僅依賴(lài)于k而與m無(wú)關(guān),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案