已知數(shù)列{an}滿足對任意的n∈N*,都有an>0,且a13+a23+…+an3=(a1+a2+…+an2
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)數(shù)列{
1
anan+2
}
的前n項(xiàng)和為Sn,不等式Sn
1
3
loga(1-a)
對任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.
(1)當(dāng)n=1時,有a13=a12,
由于an>0,所以a1=1.
當(dāng)n=2時,有a13+a23=(a1+a22,
將a1=1代入上式,由于an>0,所以a2=2.
(2)由于a13+a23++an3=(a1+a2++an2,①
則有a13+a23++an3+an+13=(a1+a2++an+an+12.②
②-①,得an+13=(a1+a2++an+an+12-(a1+a2++an2,
由于an>0,所以an+12=2(a1+a2++an)+an+1.③
同樣有an2=2(a1+a2++an-1)+an(n≥2),④
③-④,得an+12-an2=an+1+an
所以an+1-an=1.
由于a2-a1=1,即當(dāng)n≥1時都有an+1-an=1,所以數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列.
故an=n.
(3)由(2)知an=n,則
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

所以Sn=
1
a1a3
+
1
a2a4
+
1
a3a5
++
1
an-1an+1
+
1
anan+2
=
1
2
(1-
1
3
)+
1
2
(
1
2
-
1
4
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
n-1
-
1
n+1
)+
1
2
(
1
n
-
1
n+2
)
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)
=
3
4
-
1
2
(
1
n+1
+
1
n+2
)

Sn+1-Sn=
1
(n+1)(n+3)
>0

∴數(shù)列{Sn}單調(diào)遞增.
所以(Sn)min=S1=
1
3

要使不等式Sn
1
3
loga(1-a)
對任意正整數(shù)n恒成立,只要
1
3
1
3
loga(1-a)

∵1-a>0,∴0<a<1.
∴1-a>a,即0<a<
1
2

所以,實(shí)數(shù)a的取值范圍是(0,
1
2
)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案