【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
【答案】(1)0.125;(2)5;(3)
【解析】
(1)由頻率=,能求出表中M、p及圖中a的值.(2)由頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖能求出參加社區(qū)服務(wù)的平均次數(shù).(3)在樣本中,處于[20,25)內(nèi)的人數(shù)為3,可分別記為A,B,C,處于[25,30]內(nèi)的人數(shù)為2,可分別記為a,b,由此利用列舉法能求出至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
(1)由分組[10,15)內(nèi)的頻數(shù)是10,頻率是0.25知,,所以M=40.
因為頻數(shù)之和為40,所以.
因為a是對應(yīng)分組[15,20)的頻率與組距的商,所以.
(2)因為該校高三學(xué)生有360人,分組[15,20)內(nèi)的頻率是0.625,
所以估計該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在此區(qū)間內(nèi)的人數(shù)為360×0.625=225人.
(3)這個樣本參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生共有3+2=5人
設(shè)在區(qū)間[20,25)內(nèi)的人為{a1,a2,a3},在區(qū)間[25,30)內(nèi)的人為{b1,b2}.
則任選2人共有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)10種情況,(9分)
而兩人都在[20,25)內(nèi)共有(a1,a2),(a1,a3),(a2,a3)3種情況,
至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項為2,公比為的等比數(shù)列,且前項和為.
(1)用表示;
(2)是否存在自然數(shù)和,使得成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)過點P(2,1),且離心率為 .
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,在橢圓短軸上有兩點M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點,并求出定點的坐標(biāo);
(ii)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過原點O(0,0)且與直線y=2x﹣8相切于點P(4,0).
(1)求圓C的方程;
(2)已知直線l經(jīng)過點(4, 5),且與圓C相交于M,N兩點,若|MN|=2,求出直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某項科研活動共進(jìn)行了5次試驗,其數(shù)據(jù)如表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
x | 555 | 559 | 551 | 563 | 552 |
y | 601 | 605 | 597 | 599 | 598 |
(Ⅰ)從5次特征量y的試驗數(shù)據(jù)中隨機地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測當(dāng)特征量x為570時特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為 = , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率為,且過點,過橢圓的左頂點A作直線軸,點M為直線上的動點,點B為橢圓右頂點,直線BM交橢圓C于P
(1)求橢圓C的方程;
(2)求證:;
(3)試問是否為定值?若是定值,請求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com