(15分)某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:

方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;

方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56 000元;

方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.

(1)試求方案3中損失費(fèi)X(隨機(jī)變量)的分布列;

(2)試比較哪一種方案好.

 

【答案】

(1)

(2)

【解析】(1)在方案3中,記“甲河流發(fā)生洪水”為事件A,“乙河流發(fā)生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發(fā)生洪水的概率為P(A·+·B)=P(A)·P()+P()·P(B)=0.34,兩河流同時(shí)發(fā)生洪水的概率為P(A·B)=0.045,都不發(fā)生洪水的概率為P(·)=0.75×0.82=0.615,設(shè)損失費(fèi)為隨機(jī)變量X,則X的分布列為:

X

10 000

60000

0

P

0.34

0.045

0.615

……………………………………………………………………………………………8

(2)對(duì)方案1來說,花費(fèi)4000元;

對(duì)方案2來說,建圍墻需花費(fèi)1000元,它只能抵御一條河流的洪水,但當(dāng)兩河流都發(fā)生洪水時(shí),損失約56000元,而兩河流同時(shí)發(fā)生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費(fèi)為:1000+56000×0.045=3 520(元).

對(duì)于方案來說,損失費(fèi)的數(shù)學(xué)期望為:EX=10000×0.34+60000×0.045=6100(元),

比較可知,方案2最好,方案1次之,方案3最差………………………15

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案