精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,且,若點E,F分別為ABCD的中點.

1)求證:平面平面;

2)若二面角的平面角的余弦值為,求與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)先由線面垂直的判定定理證得平面,再由面面垂直的判定定理證得平面平面;

2)由二面角的定義及題意可知,,建立空間直角坐標系,求出平面的法向量,,利用即可得解.

1,中點,

,

,平面,平面,,

平面,

平面ABCD,

平面平面.

2,,平面平面

就是二面角的平面角,

所以,

如圖作,垂足為O

,所以,,則,

如圖,建立空間直角坐標系,

,,

設平面的法向量為,則

,即,

,則,

是平面的一個法向量,,

.

所以與平面所成角的正弦值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】空氣質量AQI指數是反映空氣質量狀況指數,AQI指數值越小,表明空氣質量越好,其對應關系如表:

AQI指數值

空氣質量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

如圖所示的是某市111日至20AQI指數變化的折線圖:

下列說法不正確的是(

A.天中空氣質量為輕度污染的天數占

B.天中空氣質量為優(yōu)和良的天數為

C.天中AQI指數值的中位數略低于

D.總體來說,該市11月上旬的空氣質量比中旬的空氣質量好

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數ab滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知.

1)當時,不等式恒成立,求m的取值范圍;

2)求證:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知兩直線方程,點上運動,點上運動,且線段的長為定值.

(Ⅰ)求線段的中點的軌跡方程;

(Ⅱ)設直線與點的軌跡相交于兩點,為坐標原點,若,求原點的直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一年度未發(fā)生有責任道路交通事故

下浮10%

上兩年度未發(fā)生有責任道路交通事故

下浮

上三年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責任交通死亡事故

上浮30%

某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數學期望;(數學期望值保留到個位數字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并與圓內切,圓心的軌跡為曲線.

1)求的方程;

2)若直線與曲線交于兩點,問是否在軸上存在一點,使得當變動時總有?若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱柱中,底面為平行四邊形, ,,且在底面上的投影恰為的中點.

1)過作與垂直的平面,交棱于點,試確定點的位置,并說明理由;

2)若點滿足,試求的值,使二面角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,函數.

1)當時,求函數的單調區(qū)間;

2)求函數的極值;

3)若函數在區(qū)間上有唯一零點,試求的值.

查看答案和解析>>

同步練習冊答案