【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(1)求曲線與直線的直角坐標(biāo)方程.
(2)直線與軸的交點為,與曲線的交點為,,求的值.
【答案】(1) 的直角坐標(biāo)方程為,的直角坐標(biāo)方程為.(2)
【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得曲線與直線的直角坐標(biāo)方程.
(2)由(1)知,點的坐標(biāo)為,求得直線的參數(shù)方程,把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用參數(shù)的幾何意義,即可求解.
(1)曲線的極坐標(biāo)方程為,所以,
由得曲線的直角坐標(biāo)方程為,
又因為直線的極坐標(biāo)方程為,即,
所以直線的直角坐標(biāo)方程為.
(2)由(1)知,點的坐標(biāo)為,
不妨設(shè)直線的參數(shù)方程為(為參數(shù)),
曲線的直角坐標(biāo)方程為,
把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程并化簡得,
設(shè)方程的兩根分別為,,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向右平移個單位長度,再把橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖像,則下列說法正確的是( )
A. 函數(shù)的最小正周期為
B. 函數(shù)在區(qū)間上單調(diào)遞增
C. 函數(shù)在區(qū)間上的最小值為
D. 是函數(shù)的一條對稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1中,點O是四邊形ABCD的中心,關(guān)于直線A1O,下列說法正確的是( )
A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為擔(dān)任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔(dān)任班主任的教師月平均通話時長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為、,,點在橢圓上,且的周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)若點的坐標(biāo)為,不過原點的直線與橢圓相交于,兩點,設(shè)線段的中點為,點到直線的距離為,且,,三點共線,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:平面;
(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極小值;
(2)若對任意的,函數(shù)的圖像恒在軸上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)在區(qū)間上的最小值;
(Ⅱ)當(dāng)時,求證:過點恰有2條直線與曲線相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com