7.設(shè)集合A={x|ex$>\frac{1}{e}$},B={x|log2x<0},則A∩B等于(  )
A.{x|x<-1或x>1}B.{x|-1<x<1}C.{x|0<x<1}D.{x|x>1}

分析 求出A與B中不等式的解集分別確定出A與B,即可確定出兩集合的交集.

解答 解:由A中不等式變形得:ex$>\frac{1}{e}$=e-1,即x>-1,
∴A={x|x>-1},
由B中不等式變形得:log2x<0=log21,得到0<x<1,
∴B={x|0<x<1},
則A∩B={x|0<x<1},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若以曲線y=f(x)上任意一點M1(x1,y1)為切點作切線l1,曲線上總存在異于M的點N(x2,y2),以點N為切點做切線l2,且l1∥l2,則稱曲線y=f(x)具有“可平行性”,現(xiàn)有下列命題:①偶函數(shù)的圖象都具有“可平行性”;②函數(shù)y=sinx的圖象具有“可平行性”;③三次函數(shù)f(x)=x3-x2+ax+b具有“可平行性”,且對應(yīng)的兩切點M(x1,y1),N(x2,y2)的橫坐標(biāo)滿足${x_1}+{x_2}=\frac{2}{3}$;④要使得分段函數(shù)$f(x)=\left\{\begin{array}{l}x+\frac{1}{x}(x>m)\\{e^x}-1(x<0)\end{array}\right.$的圖象具有“可平行性”,當(dāng)且僅當(dāng)實數(shù)m=1.
以上四個命題真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負(fù)實根,則a<0;
②函數(shù)y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函數(shù),但不是奇函數(shù);
③設(shè)函數(shù)y=f(x)定義域為R,則函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于y軸對稱;
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點個數(shù)是m,則m的值不可能是1.
其中正確的是( 。
A.(1)(2)B.(1)(4)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,M、N分別是AA1、AC的中點
(1)求證:MN∥平面BCD1A1
(2)求證:MN⊥C1D.
(3)求V${\;}_{D-MN{C}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x>0}\\{0,x=0}\\{{x^2}+mx,x<0}\end{array}}\right.$為奇函數(shù).
(Ⅰ)求f(-1)以及實數(shù)m的值;
(Ⅱ)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若f(a)=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(Ⅰ)已知全集U={1,2,a-1},A={1,b},∁UA={3},求a、b;
(Ⅱ)若M={x|0<x<2},N={x|x<1,或x>4},求(∁RM)∩N,M∪(∁RN).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若在△ABC中,∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,則△ABC外接圓的半徑R=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若∠A,∠B,∠C為△ABC的三個內(nèi)角,則下列錯誤的是( 。
A.sinA=-sin(B十C)B.cosA=-cos(B+C)C.tanA=-tan(B+C)D.cos(A+B)+cosC=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列函數(shù)的值域;
(1)y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$];
(2)y=cos2x-4cosx+5.

查看答案和解析>>

同步練習(xí)冊答案