(本小題滿分12分)

如圖,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點(diǎn).

   (Ⅰ)求證:AB1//面BDC1

  (Ⅱ)求二面角C1—BD—C的余弦值;

   (Ⅲ)在側(cè)棱AA­1上是否存在點(diǎn)P,使得

CP⊥面BDC1?并證明你的結(jié)論.

 
 

 

 

 

 

 

 

 

 

 

【答案】

 

(Ⅰ)略

(Ⅱ)

(Ⅲ)略

【解析】(I)證明:

          連接B1C,與BC1相交于O,連接OD

          ∵BCC1B1是矩形,

∴O是B1C的中點(diǎn).

 
又D是AC的中點(diǎn),

∴OD//AB1.………………………………………………2分

∵AB­1面BDC­1,OD面BDC1,

∴AB1//面BDC1.…………………………………………4分

   (II)解:如力,建立空間直角坐標(biāo)系,則

         C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0),

         D(1,3,0)……………………5分

         設(shè)=(x1,y1,z1)是面BDC1的一個(gè)法向量,則

.…………6分

易知=(0,3,0)是面ABC的一個(gè)法向量.

.…………………………8分

∴二面角C1—BD—C的余弦值為.………………………………9分

   (III)假設(shè)側(cè)棱AA1上存在一點(diǎn)P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.

         則

          ∴方程組無解.

∴假設(shè)不成立.

∴側(cè)棱AA1上不存在點(diǎn)P,使CP⊥面BDC1.……………14分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案