(2013•江門二模)設(shè)函數(shù)f0(x)=x2e-
12
x
,記f0(x)的導函數(shù)f'0(x)=f1(x),f1(x)的導函數(shù)f'1(x)=f2(x),f2(x)的導函數(shù)f'2(x)=f3(x),…,fn-1(x)的導函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.
分析:(1)由函數(shù)f0(x)=x2e-
1
2
x
,利用導數(shù)的性質(zhì),能夠依次求出f1(x),f2(x),f3(x)的表達式即可得到f3(0).
(2)不失一般性,設(shè)函數(shù)fn-1(x)=(an-1x2+bn-1x+cn-1)eλx,導函數(shù)為fn(x)=(anx2+bnx+cn)eλx,對fn-1(x)求導,再結(jié)合題中條件求出cn=n(n-1)•λn-2,因此fn(0)=cn=n(n-1)λn-2.將λ=-
1
2
代入即得:fn(0);
(3)由(2)知fn+1(0)=n(n+1)(-
1
2
n-1,再對n分奇偶數(shù)討論:當n=2k(k=1,2,…)時,得到當Sn最大時,n為奇數(shù).當n=2k+1(k≥2)時,數(shù)列{S2k+1}是遞減數(shù)列,又S1=f2(0),S3=f2(0)+f3(0)+f3(0)=2,從而得出當n=1或n=3時,Sn取最大值.
解答:解:(1)易得,f1(x)=(-
1
2
x2+2x)e -
1
2
x
,
f2(x)=(
1
4
x2-2x+2)e -
1
2
x

f3(x)=(-
1
8
x2+
3
2
x-3)e -
1
2
x
,
∴f3(0)=-3.
(2)不失一般性,設(shè)函數(shù)fn-1(x)=(an-1x2+bn-1x+cn-1)eλx,導函數(shù)為fn(x)=(anx2+bnx+cn)eλx,
其中n=1,2,…,常數(shù)λ≠0,a0=1,b0=c0=0.
對fn-1(x)求導得:fn-1′(x)=[λan-1x2+(2an-1+λbn-1]x+(bn-1+λcn-1)]eλx,
故由fn-1′(x)=fn(x)得:an=λan-1    ①,
bn=2an-1+λbn-1 ②,
cn=2bn-1+λcn-1  ③
由①得:ann,n∈N,
代入②得:bn=2λn+λbn-1,即
bn
λn
=
2
λ
+
bn-1
λn-1
,其中n=1,2,…,
故得:bn=2n•λn-2+λcn-1
代入③得:cn=2nλn-2+λcn-1,即
cn
λn
=
2n
λ2
+
cn-1
λn-1
,其中n=1,2,…,
故得:cn=n(n-1)•λn-2,
因此fn(0)=cn=n(n-1)λn-2
將λ=-
1
2
代入得:fn(0)=n(n-1)(-
1
2
n-2.其中n∈N.
(3)由(2)知fn+1(0)=n(n+1)(-
1
2
n-1,
當n=2k(k=1,2,…)時,S2k-S2k-1=f2k+1(0)=2k(2k+1)(-
1
2
)2k-1
<0,
∴S2k-S2k-1<0,S2k<S2k-1故當Sn最大時,n為奇數(shù).
當n=2k+1(k≥2)時,S2k+1-S2k-1=f2k+2(0)+f2k+1(0)
又f2k+2(0)=(2k+1)(2k+2)(-
1
2
)2k
,f2k+1(0)=2k(2k+1)(-
1
2
)
2k-1
,
∴f2k+2(0)+f2k+1(0)=(2k+1)(2k+2)(-
1
2
)2k
+2k(2k+1)(-
1
2
)
2k-1
=(2k+1)(k-1)(-
1
2
)
2k-1
<0,
∴S2k+1<S2k-1,因此數(shù)列{S2k+1}是遞減數(shù)列
又S1=f2(0),S3=f2(0)+f3(0)+f3(0)=2,
故當n=1或n=3時,Sn取最大值S1=S3=2.
點評:本題考查導數(shù)的應(yīng)用、數(shù)列的函數(shù)特性和數(shù)列與函數(shù)的綜合,解題時要認真審題,仔細解答,認真分析,注意總結(jié),屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)(幾何證明選講)如圖,圓O的直徑AB=9,直線CE與圓O相切于點C,AD⊥CE于D,若AD=1,設(shè)∠ABC=θ,則sinθ=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)設(shè)等比數(shù)列{an}的前n項和為Sn.則“a1>0”是“S3>S2”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)設(shè)集合A={x|-1≤x≤2,x∈N},集合B={2,3},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)(坐標系與參數(shù)方程)在極坐標系中,設(shè)曲線C1:ρ=2sinθ與C2:ρ=2cosθ的交點分別為A、B,則線段AB的垂直平分線的極坐標方程為
ρsinθ+ρcosθ=1
ρsinθ+ρcosθ=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江門二模)下列命題中假命題是( 。

查看答案和解析>>

同步練習冊答案