已知直線與直線互相垂直,則的最大值為   

 

【答案】

2

【解析】

試題分析:因為,直線與直線互相垂直,所以,,即,所以,由基本不等式得,

的最大值為2.

考點:直線垂直的條件,基本不等式的應用。

點評:小綜合題,兩直線垂直的條件是斜率乘積為-1.或一條直線斜率為0,另一直線斜率不存在。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為2
3
,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學(江蘇卷) 題型:044

在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4

(1)若直線l過點A(4,0),且被圓C1截得的弦長為,求直線l的方程;

(2)設(shè)P為平面上的點,滿足:存在過點P的無窮多對互相垂的直線l1l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省黃岡市黃梅三中高一(下)期末數(shù)學復習試卷(4)(解析版) 題型:解答題

在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省東莞五校高一(下)期中數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省高考數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4
(I)若直線l過點A(4,0),且被圓C1截得的弦長為,求直線l的方程;
(II)設(shè)P(a,b)為平面上的點,滿足:存在過點P的兩條互相垂的直線l1與l2,l1的斜率為2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求滿足條件的a,b的關(guān)系式.

查看答案和解析>>

同步練習冊答案