13.空間不共線的四點(diǎn),可以確定平面的個(gè)數(shù)是( 。
A.0B.1C.1或4D.無(wú)法確定

分析 若有三點(diǎn)共線,則可以確定平面的個(gè)數(shù)為1個(gè);若任意三點(diǎn)均不共線,則可以確定平面的個(gè)數(shù)是${C}_{4}^{3}$=4.

解答 解:若有三點(diǎn)共線,則由直線與直線外一點(diǎn)確定一個(gè)平面,得:
不共線的四點(diǎn),可以確定平面的個(gè)數(shù)為1個(gè);
若任意三點(diǎn)均不共線,則空間不共線的四點(diǎn),可以確定平面的個(gè)數(shù)是${C}_{4}^{3}$=4.
∴空間不共線的四點(diǎn),可以確定平面的個(gè)數(shù)是1或4個(gè).
故選:C.

點(diǎn)評(píng) 本題考查滿足條件的平面?zhèn)數(shù)的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面的基本性質(zhì)及其推論的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.以下說(shuō)法中:
①圓臺(tái)上底面的面積與下底面的面積之比一定小于1;
②矩形繞任意一條直線旋轉(zhuǎn)都可以圍成圓柱;
③過(guò)圓臺(tái)側(cè)面上每一點(diǎn)的母線都相等.
正確的序號(hào)為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知Eξ=5,η=3ξ+1,求Eη之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,則z=$\frac{y}{x}$-$\frac{x}{y}$的取值范圍是[-$\frac{8}{3}$,$\frac{3}{2}$],z=$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,△OBC的邊BC所在的直線方程是l:x-y-3=0
(1)如果一束光線從原點(diǎn)O射出,經(jīng)直線l反射后,經(jīng)過(guò)點(diǎn)(3,3),求反射后光線所在直線的方程:
(2)如果在△OBC中,∠BOC為直角,求△OBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)y=f(x)定于在實(shí)數(shù)集R上,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意示數(shù)m,n都有f(m+n)=f(m)•f(n).
(1)證明f(x)在R上,恒有f(x)>0;
(2)證明f(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.${∫}_^{a}\sqrt{(a-x)(x-b)}dx(b>a)$=$\frac{π(b-a)^{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知F1、F2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),頂點(diǎn)B的坐標(biāo)是(0,b),連接BF2并延長(zhǎng)交橢圓于點(diǎn)M,點(diǎn)M關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為N,連接F1、N.
(I)若點(diǎn)N的坐標(biāo)為($\frac{8}{3}$,$\frac{2}{3}$),且BF2=2$\sqrt{2}$,求橢圓的方程;
(Ⅱ)若F1N⊥MB,求橢圓離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且滿足2Sn=${a}_{n}^{2}$+n-4
(1)求證{an}為等差數(shù)列;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案