3.已知直線x-y+1=0上有兩點(diǎn)A,B,且AB=2,動(dòng)點(diǎn)P在拋物線y2=2x上,則△PAB面積的最小值是$\frac{\sqrt{2}}{4}$.

分析 通過(guò)三角形的面積公式可知當(dāng)點(diǎn)P到直線AB的距離最小時(shí)面積最小,求出與直線x-y+1=0平行且為拋物線的切線的直線方程,進(jìn)而利用面積公式計(jì)算即得結(jié)論.

解答 解:設(shè)與直線x-y+1=0平行且與拋物線相切的直線l方程為:x-y-t=0,
聯(lián)立直線l與拋物線方程,消去y得:y2-2y-2t=0,
則△=4+8t=0,即t=-$\frac{1}{2}$,
∵直線x-y+1=0與直線l之間的距離d=$\frac{|1-\frac{1}{2}|}{\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
∴Smin=$\frac{1}{2}$|AB|d=$\frac{1}{2}•2•$$\frac{\sqrt{2}}{4}$=$\frac{\sqrt{2}}{4}$,
故答案為$\frac{\sqrt{2}}{4}$.

點(diǎn)評(píng) 本題考查直線與圓錐曲線的關(guān)系,考查運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.把20.3,(0.3)2,log30.6從小到大排列為20.3>(0.3)2>log30.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出下列四個(gè)命題:
①命題p:?x∈R,sinx≤1,則¬p:?x∈R,sinx<1.
②當(dāng)a≥1時(shí),不等式|x-4|+|x-3|<a的解集非空.
③當(dāng)x>1時(shí),有l(wèi)nx+$\frac{1}{lnx}$≥2   
④“在△ABC中,若sinA>sinB,則A>B”的逆命題是真命題.
其中真命題③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.運(yùn)行如圖程序,可求得f(-3)+f(2)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sinα+cosα=-$\frac{1}{5}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求sinα,cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.中心在原點(diǎn),實(shí)軸在x軸上,一個(gè)焦點(diǎn)在直線3x-4y+12=0上的等軸雙曲線方程是( 。
A.x2-y2=8B.x2-y2=4C.y2-x2=8D.y2-x2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x-1),已知當(dāng)x∈[0,1]時(shí),f(x)=(${\frac{1}{2}}$)1-x,則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱軸;
其中所有正確命題的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)⊙C1:(x-5)2+(y-3)2=9,⊙C2:x2+y2-4x+2y-9=0,則它們公切線的條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點(diǎn)都在體積為$\frac{32π}{3}$的球面上,則直線B1C與直線AC1所成角的余弦值為( 。
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.$-\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案