精英家教網 > 高中數學 > 題目詳情
已知a,b∈R,a+bi=(1+2i)(1-i) (i為虛數單位),則a+b的值為
 
分析:由復數的乘法運算,化簡已知式子的右邊,由復數相等可得a、b的值,進而可得答案.
解答:解:∵(1+2i)(1-i)=1-i+2i-2i2=3+i,
∴a+bi=3+i,
由復數相等的定義可得a=3,b=1,
∴a+b=3+1=4
故答案為:4
點評:本題考查復數相等的定義,涉及復數的乘法運算,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a∈R,b∈R,且a≠b,在①a2+3ab>2b2;②a5+b5>a3b2+a2b3;③a2+b2≥2(a-b-1);④+>2.這四個式子中恒成立的是(    )

A①②             B①③             C①②③④         D③

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省衡水中學高二(上)第三次調研數學試卷(文科)(解析版) 題型:選擇題

已知a,b∈R+,A為a,b的等差中項,正數G為a,b的等比中項,則ab與AG的大小關系是( )
A.ab=AG
B.ab≥AG
C.ab≤AG
D.不能確定

查看答案和解析>>

科目:高中數學 來源:2010-2011學年山東省聊城一中高三(上)期末數學試卷(理科)(解析版) 題型:選擇題

已知a,b∈R+,A為a,b的等差中項,正數G為a,b的等比中項,則ab與AG的大小關系是( )
A.ab=AG
B.ab≥AG
C.ab≤AG
D.不能確定

查看答案和解析>>

科目:高中數學 來源:2011年高三數學第一輪復習鞏固與練習:數列的綜合應用(解析版) 題型:選擇題

已知a,b∈R+,A為a,b的等差中項,正數G為a,b的等比中項,則ab與AG的大小關系是( )
A.ab=AG
B.ab≥AG
C.ab≤AG
D.不能確定

查看答案和解析>>

科目:高中數學 來源:2011年高考數學復習:5.5 數列的綜合應用(解析版) 題型:選擇題

已知a,b∈R+,A為a,b的等差中項,正數G為a,b的等比中項,則ab與AG的大小關系是( )
A.ab=AG
B.ab≥AG
C.ab≤AG
D.不能確定

查看答案和解析>>

同步練習冊答案