已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求滿足不等式f(2x-1)<f(數(shù)學(xué)公式)的實(shí)數(shù)x的取值范圍.

解:因?yàn)閒(x)為偶函數(shù),所以f(2x-1)=f(|2x-1|),
則f(2x-1)<f()即為f(|2x-1|)<f(),
又f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
所以|2x-1|<,即-<2x-1<,解得,
故實(shí)數(shù)x的取值范圍為:
分析:由偶函數(shù)性質(zhì)可得f(2x-1)=f(|2x-1|),再由函數(shù)的單調(diào)性可去掉不等式中的符號(hào)“f”,從而轉(zhuǎn)化為具體不等式,解出絕對(duì)值不等式即可.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性的綜合應(yīng)用,解決本題的關(guān)鍵是靈活利用函數(shù)性質(zhì)去掉不等式中的符號(hào)“f”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,π]上單調(diào)遞增,那么下列關(guān)系成立的是( 。
A、f(-π)>f(-2)>f(
π
2
)
B、f(-π)>f(-
π
2
)>f(-2)
C、f(-2)>f(-
π
2
)>f(-π)
D、f(-
π
2
)>f(-2)>f(π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、已知偶函數(shù)f(x)在(0,+∞)上單調(diào)遞增,則f(-3),f(-1),f(2)的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0則不等式f(2x-1)<f(
1
3
)的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,則滿足f(2x-1)<f(x+3)的x的取值范圍是
x>2或x<-
4
3
x>2或x<-
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案