分析 (Ⅰ)利用奇函數(shù)的定義,即可證明結(jié)論;
(Ⅱ)不妨設(shè)a≤b,則M=b,x-A>0,方程f(x)=$\frac{λ}{x-A}$+A等價(jià)于[x-A+$\frac{2(x-A)}{(x-a)(x-b)}$](x-A)=λ.令$\frac{b-a}{2}$=d,t=(x-A)2>$(\frac{b-a}{2})^{2}$=d2>0,則$\frac{{t}^{2}+(2-kay8ppg^{2})t}{t-grfjt3f^{2}}$=λ.令u=t-d2,則λ=u+$\frac{2ntcmke8^{2}}{u}$+2+d2≥2$\sqrt{2}$d+2+d2=$(\frac{b-a}{2}+\sqrt{2})^{2}$,即可得出結(jié)論.
解答 解:(Ⅰ)易知函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱.
∵a+b=0,∴$f(x)=x+\frac{1}{x-a}+\frac{1}{x+a}$$f(-x)=-x+\frac{1}{-x-a}+\frac{1}{-x+a}=-f(x)$
∴f(x)為奇函數(shù); …(5分)
(Ⅱ)不妨設(shè)a≤b,則M=b,x-A>0,方程f(x)=$\frac{λ}{x-A}$+A等價(jià)于[x-A+$\frac{2(x-A)}{(x-a)(x-b)}$](x-A)=λ.
令$\frac{b-a}{2}$=d,則x-a=(x-A)=d,x-b=(x-A)+d,
∴(x-A)2[1+$\frac{2}{[(x-A)-d]•[(x-A)+d]}$=λ,
令t=(x-A)2>$(\frac{b-a}{2})^{2}$=d2>0,則$\frac{{t}^{2}+(2-8vaoy9i^{2})t}{t-ye3nau8^{2}}$=λ.
令u=t-d2,則λ=u+$\frac{2ahtmvfz^{2}}{u}$+2+d2≥2$\sqrt{2}$d+2+d2=$(\frac{b-a}{2}+\sqrt{2})^{2}$,
當(dāng)且僅當(dāng)u=$\frac{2avkocev^{2}}{u}$,即t=$\sqrt{2}d+u3gz8ej^{2}$,x=$\frac{b+a}{2}+\frac{\sqrt{(b-a)^{2}+2\sqrt{2}(b-a)}}{2}$∈(b,+∞)時(shí)取等號(hào),
∵方程f(x)=$\frac{λ}{x-A}$+A在區(qū)間(M,+∞)上無(wú)解,
∴λ<$(\frac{b-a}{2}+\sqrt{2})^{2}$.
點(diǎn)評(píng) 本題考查奇函數(shù)的定義,考查方程f(x)=$\frac{λ}{x-A}$+A在區(qū)間(M,+∞)上無(wú)解,考查學(xué)生轉(zhuǎn)化問題的能力,難度大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:3 | B. | 3:1 | C. | 1:2 | D. | 2:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知函數(shù).
(1)用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為增函數(shù);
(2)若,當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題
如圖,在三棱柱中,平面,,,,,分別為、的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面,并求到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com