【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù), ).

(Ⅰ)把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;

(Ⅱ)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.

【答案】(1)詳見解析;(2

【解析】試題分析:(1)對曲線的極坐標(biāo)方程兩邊乘以,可化得其直角坐標(biāo)方程為,這是頂點(diǎn)在原點(diǎn),焦點(diǎn)為的拋物線;(2)根據(jù)直線參數(shù)方程的定義可知,直線過點(diǎn),依題意直線又過點(diǎn),由此求得直線方程為,傾斜角為,故直線的參數(shù)方程為,代入拋物線的直角坐標(biāo)方程,寫出韋達(dá)定理,利用求得弦長為.

試題解析:(1)曲線的直角坐標(biāo)方程為,故曲線是頂點(diǎn)為,焦點(diǎn)為的拋物線.

(2)直線的參數(shù)方程為為參數(shù), ),故經(jīng)過點(diǎn),若直線經(jīng)過點(diǎn),則.

∴直線的參數(shù)方程為為參數(shù))

代入,得,

設(shè)對應(yīng)的參數(shù)分別為,則, ,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形的半徑為r cm,周長為20cm,問扇形的圓心角α等于多少弧度時,這個扇形的面積最大,并求出扇形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛汽車從市出發(fā)沿海岸一條筆直公路以每小時的速度向東均速行駛,汽車開動時,在市南偏東方向距且與海岸距離為的海上處有一快艇與汽車同時出發(fā),要把一份稿件交給這汽車的司機(jī).

1)快艇至少以多大的速度行駛才能把稿件送到司機(jī)手中?

2)在(1)的條件下,求快艇以最小速度行駛時的行駛方向與所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD為矩形,ABBP,MAC的中點(diǎn),NPD上一點(diǎn).

(1)若MN∥平面ABP,求證:NPD的中點(diǎn);

(2)若平面ABP⊥平面APC,求證:PC⊥平面ABP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

的濃度;

(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)兩個非零向量 不共線.
(1)如果 = + , =2 +8 =3 ﹣3 ,求證:A、B、D三點(diǎn)共線;
(2)若| |=2,| |=3, 的夾角為60°,是否存在實數(shù)m,使得m + 垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα+cosα= ,α∈(0, ),sin(β﹣ )= ,β∈( , ).
(1)求sin2α和tan2α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).
(1)點(diǎn)M(x,y)橫、縱坐標(biāo)分別由擲骰子確定,第一次確定橫坐標(biāo),第二次確定縱坐標(biāo),則點(diǎn)M(x,y)落在上述區(qū)域的概率?
(2)試求方程x2+2px﹣q2+1=0有兩個實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex,

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案