【題目】設(shè)10≤x1<x2<x3<x4≤104 , x5=105 , 隨機變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機變量ξ2取值 、 、 、 、 的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則(
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關(guān)系與x1、x2、x3、x4的取值有關(guān)

【答案】A
【解析】解:由隨機變量ξ1、ξ2的取值情況,它們的平均數(shù)分別為:
= (x1+x2+x3+x4+x5), = + + + + )= 且隨機變量ξ1、ξ2的取值的概率都為0.2,所以有Dξ1>Dξ2 ,
故選擇A.
【考點精析】解答此題的關(guān)鍵在于理解離散型隨機變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某組織在某市征集志愿者參加志愿活動,現(xiàn)隨機抽出60名男生和40名女生共100人進行調(diào)查,統(tǒng)計出100名市民中愿意參加志愿活動和不愿意參加志愿活動的男女生比例情況,具體數(shù)據(jù)如圖所示.

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否有的把握認為愿意參與志愿活動與性別有關(guān)?

愿意

不愿意

總計

男生

女生

總計

(2)現(xiàn)用分層抽樣的方法從愿意參加志愿活動的市民中選取7名志愿者,再從中抽取2人作為隊長,求抽取的2人至少有一名女生的概率.

參考數(shù)據(jù)及公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制.各等級劃分標準見下表.

規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.

I)求和頻率分布直方圖中的的值,并估計該校高一年級學(xué)生成績是合格等級的概率;

II)在選取的樣本中,從兩個等級的學(xué)生中隨機抽取2名學(xué)生進行調(diào)研,求至少有一名學(xué)生是等級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點M到兩定點A(﹣1,0)、B(2,0)構(gòu)成△MAB,且∠MBA=2∠MAB,設(shè)動點M的軌跡為C.

(1)求軌跡C的方程;
(2)設(shè)直線y=﹣2x+m與y軸交于點P,與軌跡C相交于點Q、R,且|PQ|<|PR|,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點,已知AB=2,AD=2 ,PA=2,求:

(1)三角形PCD的面積;
(2)異面直線BC與AE所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設(shè)每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結(jié)果相互獨立,則恰好5場比賽決出總冠軍的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比不為1的等比數(shù)列,其前n項和為Sn , 且a5 , a3 , a4成等差數(shù)列.
(1)求數(shù)列{an}的公比;
(2)證明:對任意k∈N+ , Sk+2 , Sk , Sk+1成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求證:BD⊥平面AED;
(2)求二面角F﹣BD﹣C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案