【題目】已知函數(shù)f(x)是定義在[1,+∞)上的函數(shù),且f(x)= ,則函數(shù)y=2xf(x)﹣3在區(qū)間(1,2016)上的零點(diǎn)個數(shù)為

【答案】11
【解析】解:令函數(shù)y=2xf(x)﹣3=0,得到方程f(x)= ,當(dāng)x∈[1,2)時(shí),函數(shù)f(x)先增后減,在x= 時(shí)取得最大值1,
而y= 在x= 時(shí)也有y=1;
當(dāng)x∈[2,22)時(shí),f(x)= ,在x=3處函數(shù)f(x)取得最大值 ,
而y= 在x=3時(shí)也有y=
當(dāng)x∈[22 , 23)時(shí),f(x)= ,在x=6處函數(shù)f(x)取得最大值 ,
而y= 在x=6時(shí)也有y= ;
…;
當(dāng)x∈[210 , 211)時(shí),f(x)= ,在x=1536處函數(shù)f(x)取得最大值 ,
而y= 在x=1536時(shí)也有y=
∴函數(shù)y=2xf(x)﹣3在區(qū)間(1,2016)上的零點(diǎn)個數(shù)為11.
所以答案是:11.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex,

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,a,b∈R,a≠0,b≠0,f(1)= ,且方程f(x)=x有且僅有一個實(shí)數(shù)解;
(1)求a、b的值;
(2)當(dāng)x∈( , ]時(shí),不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, , 平分, 的中點(diǎn), .

(1)證明: 平面.

(2)證明: 平面.

(3)求直線與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的定義域和值域;

(2)設(shè)為實(shí)數(shù)),求時(shí)的最大值;

(3)對(2)中,若所有的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達(dá)人, 每次購買商品成功后都會對電商的商品和服務(wù)進(jìn)行評價(jià). 現(xiàn)對其近年的200次成功交易進(jìn)行評價(jià)統(tǒng)計(jì), 統(tǒng)計(jì)結(jié)果如下表所示.

對服務(wù)好評

對服務(wù)不滿意

合計(jì)

對商品好評

80

40

120

對商品不滿意

70

10

80

合計(jì)

150

50

200

(1) 是否有的把握認(rèn)為商品好評與服務(wù)好評有關(guān)? 請說明理由;

(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進(jìn)行觀察, 求只有一次好評的概率.

,其中

查看答案和解析>>

同步練習(xí)冊答案