【題目】定義在[0,+∞)上的函數(shù)f(x)滿足:①當(dāng)x∈[1,2)時(shí), ;②x∈[0,+∞)都有f(2x)=2f(x).設(shè)關(guān)于x的函數(shù)F(x)=f(x)﹣a的零點(diǎn)從小到大依次為x1 , x2 , x3 , …xn , …,若 ,則x1+x2+…+x2n= .
【答案】6×(2n﹣1)
【解析】解:∵①當(dāng)x∈[1,2)時(shí), ;②x∈[0,+∞)都有f(2x)=2f(x). 當(dāng)x∈[2,4)時(shí), ∈[1,2),
f(x)=2f( x)=2( ﹣| ﹣ |)=1﹣|x﹣3|,x∈[4,8)時(shí), ∈[2,4),
f(x)=2f( x)=2(1﹣| x﹣3|)=2﹣|x﹣6|,
同理,則 ,F(xiàn)(x)=f(x)﹣a在區(qū)間(2,3)和(3,4)上各有1個(gè)零點(diǎn),分別為x1 , x2 , 且滿足x1+x2=2×3=6,
依此類推:x3+x4=2×6=12,x5+x6=2×12=24…,x2n﹣1+x2n=2×3×2n﹣1 .
∴當(dāng) 時(shí),x1+x2+…+x2n﹣1+x2n=6×(1+2+22+…+2n﹣1)=6× =6×(2n﹣1),
所以答案是:6×(2n﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),和是函數(shù)的圖象與軸的個(gè)相鄰交點(diǎn)的橫坐標(biāo),且當(dāng)時(shí),取得最大值.
(1)求數(shù)的表達(dá)式;
(2)將函數(shù)的圖象上的每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變),得到函數(shù)的圖象,再將函數(shù)的圖象向右平移個(gè)單位,得到函數(shù)的圖象.
①求函數(shù)的解析式;
②求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬元,每生產(chǎn)千件需另投入2 .7萬元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷售完;每千件的銷售收入為R(x)萬元,
且,
(I)寫出年利潤W(萬元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;
〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2bcosC=acosC+ccosA.
(1)求角C的大小;
(2)若b=2,c=,求a及△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , 則稱函數(shù)f(x)是[a,b]上的“中值函數(shù)”.已知函數(shù) 是[0,m]上的“中值函數(shù)”,則實(shí)數(shù)m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓極坐標(biāo)方程為.
(1)若直線與圓相切,求的值;
(2)已知直線與圓交于,兩點(diǎn),記點(diǎn)、相應(yīng)的參數(shù)分別為,,當(dāng)時(shí),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量 , , 滿足| |= ,| |=1, =﹣1,且 ﹣ 與 ﹣ 的夾角為 ,則| |的最大值為( )
A.
B.2
C.
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: (a>b>0)的離心率為 ,P(﹣2,1)是C1上一點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn),平行于AB的直線l交C1于異于P、Q的兩點(diǎn)C,D,點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com