精英家教網 > 高中數學 > 題目詳情
精英家教網如圖,在正方體ABCD-A1B1C1D1中,M是C1C的中點,O是底面ABCD的中心,P是A1B1上的任意點,則直線BM與OP所成的角為
 
分析:將異面直線所成角轉化成證明線面垂直,根據題目的條件很容易證得線面垂直,則異面直線互相垂直.
解答:精英家教網解:如圖,取AD的中點F,BC的中點E,連接A1F,EF,B1E,
易證BM⊥面A1E,而OP?面A1E,
∴BM⊥OP所以直線BM與OP所成的角為90°,
故答案為
π
2
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結論,得到此三棱錐中的一個正確結論為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案