已知左焦點為F(-1,0)的橢圓過點E(1,).過點P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設M,N分別為線段AB,CD的中點.
(1)求橢圓的標準方程;
(2)若P為線段AB的中點,求k1;
(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標.
解:(1)依題設c=1,且右焦點F′(1,0).
所以2a=|EF|+|EF′|=+
=2,
b2=a2-c2=2,
故所求的橢圓的標準方程為+=1.
(2)設A(x1,y1),B(x2,y2),
則+=1,①
+=1.②
②-①,得+=0.
所以k1==-=-=-.
(3)依題設,k1≠k2.
設M(xM,yM),
又直線AB的方程為y-1=k1(x-1),
即y=k1x+(1-k1),
亦即y=k1x+k2,
代入橢圓方程并化簡得(2+3)x2+6k1k2x+3-6=0.
于是,xM=,yM=,
同理,xN=,yN=.
當k1k2≠0時,
直線MN的斜率k==
=.
直線MN的方程為y-=(x-),
即y=x+(·+),
亦即y=x-.
此時直線過定點(0,-).
當k1k2=0時,直線MN即為y軸,
此時亦過點(0,-).
綜上,直線MN恒過定點,且坐標為(0,-).
科目:高中數學 來源: 題型:
已知雙曲線-=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,則該雙曲線的方程為( )
(A) -=1 (B) -=1
(C) -=1 (D) -=1
查看答案和解析>>
科目:高中數學 來源: 題型:
已知橢圓C: +=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
定義:關于x的不等式|x-A|<B的解集叫A的B鄰域.
已知a+b-2的a+b鄰域為區(qū)間(-2,8),其中a、b分別為橢圓+=1的長半軸長和短半軸長,若此橢圓的一焦點與拋物線y2=4x的焦點重合,則橢圓的方程為( )
(A) +=1 (B) +=1
(C) +=1 (D) +=1
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點, =4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應的圓Q的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
一個頻率分布表(樣本容量為50)不小心被損壞了一部分,只記得樣本中數據在[20,60)上的頻率為0.6,則估計樣本在[40,50),[50,60)內的數據個數之和是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com