【題目】如圖,在棱長(zhǎng)為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(diǎn).

(1)求直線C與平面ABCD所成角的正弦的值;

(2)求證:平面A B1D1∥平面EFG;

(3)求證:平面AA1C⊥面EFG .

【答案】(1) ;(2)見解析;(3)見解析。

【解析】試題分析:(1)因?yàn)?/span>平面ABCD,所以與平面ABCD所成角,

然后解三角形求出此角即可.

2)證明面面平行根據(jù)判定定理只須證明平面平面A B1D1內(nèi)兩條相交直線分別平行于平面EFG即可.在證明線面平行時(shí)又轉(zhuǎn)化為證明線線平行.

(3)易證:BD平面AA1C,再證明EF//BD,因而可證出平面AA1CEFG.

1平面ABCD=C,在正方體ABCD-A1B1C1D1

平面ABCD

∴AC在平面ABCD的射影

與平面ABCD所成角……….2

正方體的棱長(zhǎng)為

∴AC=,=

………..4

2)在正方體ABCD-A1B1C1D1

連接BD,=

為平行四邊形

∵E,F分別為BC,CD的中點(diǎn)

∴EF∥BD∴EF∥…………3

∵EF平面GEF平面GEF

平面GEF …………7

同理平面GEF∵=

平面A B1D1平面EFG ……………9

3)在正方體ABCD-A1B1C1D1平面ABCD

∵EF平面ABCD

EF …………10

∵ABCD為正方形

ACBD

∵EF∥BD

ACEF ………..11

EF平面AA1C

∵EF平面EFG

平面AA1C⊥EFG …………….12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一錐體的三視圖如圖所示,則該棱錐的最長(zhǎng)棱的棱長(zhǎng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,則{an}的前50項(xiàng)的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占 ,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:

分?jǐn)?shù)大于等于120分

分?jǐn)?shù)不足120分

合計(jì)

周做題時(shí)間不少于15小時(shí)

4

19

周做題時(shí)間不足15小時(shí)

合計(jì)

45

(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且,

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;

(2)求過點(diǎn)(3,0)且斜率為的直線被軌跡C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過的直線為原點(diǎn)到直線的距離是

(1)求雙曲線的方程;

(2)已知直線交雙曲線于不同的兩點(diǎn)CD,問是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面ABC,,,EBC的中點(diǎn).

求證:;

求異面直線AE所成的角的大;

G中點(diǎn),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的空間幾何體中,四邊形是邊長(zhǎng)為2的正方形, 平面, , , .

(1)求證:平面平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(diǎn)(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案