(本題滿分14分)
如圖,在底面是正方形的四棱錐中,于點(diǎn),中點(diǎn),上一點(diǎn).
⑴求證:
⑵確定點(diǎn)在線段上的位置,使//平面,并說(shuō)明理由.
⑶當(dāng)二面角的大小為時(shí),求與底面所成角的正切值.

⑴見解析;⑵當(dāng)中點(diǎn),即時(shí),平面;
(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四棱錐中,四邊形為正方形,,且,中點(diǎn).
(Ⅰ)證明://平面
(Ⅱ)證明:平面平面;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(Ⅰ)求證:DM∥平面APC;
(II)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,,分別是,的中點(diǎn),點(diǎn)在直線上,且;
(1)證明:無(wú)論取何值,總有;
(2)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;
(3)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為空間四邊形的邊上的點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如右圖,在四棱錐中,底面為平行四邊形,,中點(diǎn),平面, ,中點(diǎn).
(1)證明://平面
(2)證明:平面;
(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分) 如圖,直三棱柱中, ,,.
(Ⅰ)證明:;
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)如圖,四棱錐的底面為矩形,且,
,,

(Ⅰ)平面與平面是否垂直?并說(shuō)明理由;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共l5分) 如圖,在直三棱柱ABC-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA1

(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;      
(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案