如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.
解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為+=1(a>b>0),焦距為2c,則A(0,b),|OB1|=|OB2|=.
由=4得·c·b=4,
即bc=8.①
又△AB1B2是直角三角形,
且|OB1|=|OB2|,∴b=.②
由①②可得b=2,c=4.
∴a2=20.
∴橢圓的標(biāo)準(zhǔn)方程為+=1,離心率e==.
(2)由(1)知B1(-2,0),B2(2,0).
由題意知,直線PQ的傾斜角不為0,
故可設(shè)直線PQ的方程為x=my-2.
代入橢圓方程得(m2+5)y2-4my-16=0.(*)
設(shè)P1(x1,y1),P2(x2,y2),
則y1,y2是方程(*)的兩根.
∴y1+y2=,y1·y2=-.
又=(x1-2,y1), =(x2-2,y2).
∴·=(x1-2)(x2-2)+y1y2
=(my1-4)(my2-4)+y1y2
=(m2+1)y1y2-4m(y1+y2)+16
=--+16
=-.
由PB2⊥B2Q知·=0,
即-=0,
16m2-64=0,解得m=±2.
當(dāng)m=2時,y1+y2=,y1y2=-,
|y1-y2|==.
=|B1B2|·|y1-y2|=.
當(dāng)m=-2時,由橢圓的對稱性可得=.
綜上所述,△PB2Q的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
已知F1、F2為雙曲線C:x2-y2=2的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若點P是以A(-,0),B(,0)為焦點,實軸長為2的雙曲線與圓x2+y2=10的一個交點,則|PA|+|PB|的值為( )
(A)2 (B)4 (C)4 (D)6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
橢圓+=1(a>b>0)的左、右頂點分別是A、B,左、右焦點分別是F1、F2,若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為( )
(A) (B) (C) (D) -2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若·+·=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知A、B分別為橢圓+=1(a>b>0)的左、右頂點,C(0,b),直線l:x=2a與x軸交于點D,與直線AC交于點P,若∠DBP=,則此橢圓的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線C1: -=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為( )
(A)x2=y (B)x2=y
(C)x2=8y (D)x2=16y
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某雷達測速區(qū)規(guī)定:凡車速大于或等于80 km/h的汽車視為“超速”,并將受到處罰.如圖是某路段的一個檢測點對200輛汽車的車速進行檢測所得結(jié)果的頻率分布直方圖,則從圖中可以看出被處罰的汽車大約有( )
A.20輛 B.40輛 C.60輛 D.80輛
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com