如圖,橢圓C:焦點在軸上,左、右頂點分別為A1、A,上頂點為B.拋物線C1、C:分別以A、B為焦點,其頂點均為坐標(biāo)原點O,C1與C2相交于直線上一點P.

⑴求橢圓C及拋物線C1、C2的方程;
⑵若動直線與直線OP垂直,且與橢圓C交于不同兩點M、N,已知點Q(,0),求的最小值.
解:(Ⅰ)由題意,A(,0),B(0,),故拋物線C1的方程可設(shè)為,C2的方程為………… 1分
  得………… 3分
所以橢圓C:,拋物線C1拋物線C2………5分
(Ⅱ)由(Ⅰ)知,直線OP的斜率為,所以直線的斜率為
設(shè)直線方程為
,整理得………… 6分
因為動直線與橢圓C交于不同兩點,所以
解得              ………… 7分
設(shè)M()、N(),則
……8分
因為
所以
………… 10分
因為,所以當(dāng)時,取得最小值
其最小值等于………… 12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:的左、右焦點為,其上頂點為.已知是邊長為的正三角形.
(Ⅰ)求橢圓C的方程; 
(Ⅱ)過點任作一動直線交橢圓C于兩點,記若在線段上取一點使得,試判斷當(dāng)直線運動時,點是否在某一定直線上運動?若在,請求出該定直線的方程;若不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;
(2)求弦AC中點的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的焦距、短軸長、長軸長成等差數(shù)列,則其離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點重合,則該橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若不過點的動直線與橢圓相交于兩點,且求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點坐標(biāo)是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點在軸上,長軸長是短軸長的兩倍,則的值為(    )
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心是坐標(biāo)原點,焦點在坐標(biāo)軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案