設(shè)函數(shù),記f(x)的導(dǎo)函數(shù)f'(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.
【答案】分析:(1)由函數(shù),利用導(dǎo)數(shù)的性質(zhì),能夠依次求出f1(x),f2(x),f3(x)的表達(dá)式即可得到f3(0).
(2)不失一般性,設(shè)函數(shù)fn-1(x)=(an-1x2+bn-1x+cn-1)eλx,導(dǎo)函數(shù)為fn(x)=(anx2+bnx+cn)eλx,對(duì)fn-1(x)求導(dǎo),再結(jié)合題中條件求出cn=n(n-1)•λn-2,因此fn(0)=cn=n(n-1)λn-2.將λ=-代入即得:fn(0);
(3)由(2)知fn+1(0)=n(n+1)(-n-1,再對(duì)n分奇偶數(shù)討論:當(dāng)n=2k(k=1,2,…)時(shí),得到當(dāng)Sn最大時(shí),n為奇數(shù).當(dāng)n=2k+1(k≥2)時(shí),數(shù)列{S2k+1}是遞減數(shù)列,又S1=f2(0),S3=f2(0)+f3(0)+f3(0)=2,從而得出當(dāng)n=1或n=3時(shí),Sn取最大值.
解答:解:(1)易得,f1(x)=(-x2+2x)e,
f2(x)=(x2-2x+2)e,
f3(x)=(-x2+x-3)e,
∴f3(0)=-3.
(2)不失一般性,設(shè)函數(shù)fn-1(x)=(an-1x2+bn-1x+cn-1)eλx,導(dǎo)函數(shù)為fn(x)=(anx2+bnx+cn)eλx
其中n=1,2,…,常數(shù)λ≠0,a=1,b=c=0.
對(duì)fn-1(x)求導(dǎo)得:fn-1′(x)=[λan-1x2+(2an-1+λbn-1]x+(bn-1+λcn-1)]eλx,
故由fn-1′(x)=fn(x)得:an=λan-1    ①,
bn=2an-1+λbn-1 ②,
cn=2bn-1+λcn-1  ③
由①得:ann,n∈N,
代入②得:bn=2λn+λbn-1,即,其中n=1,2,…,
故得:bn=2n•λn-2+λcn-1
代入③得:cn=2nλn-2+λcn-1,即,其中n=1,2,…,
故得:cn=n(n-1)•λn-2,
因此fn(0)=cn=n(n-1)λn-2
將λ=-代入得:fn(0)=n(n-1)(-n-2.其中n∈N.
(3)由(2)知fn+1(0)=n(n+1)(-n-1,
當(dāng)n=2k(k=1,2,…)時(shí),S2k-S2k-1=f2k+1(0)=2k(2k+1)<0,
∴S2k-S2k-1<0,S2k<S2k-1故當(dāng)Sn最大時(shí),n為奇數(shù).
當(dāng)n=2k+1(k≥2)時(shí),S2k+1-S2k-1=f2k+2(0)+f2k+1(0)
又f2k+2(0)=(2k+1)(2k+2),f2k+1(0)=2k(2k+1)
∴f2k+2(0)+f2k+1(0)=(2k+1)(2k+2)+2k(2k+1)=(2k+1)(k-1)<0,
∴S2k+1<S2k-1,因此數(shù)列{S2k+1}是遞減數(shù)列
又S1=f2(0),S3=f2(0)+f3(0)+f3(0)=2,
故當(dāng)n=1或n=3時(shí),Sn取最大值S1=S3=2.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的應(yīng)用、數(shù)列的函數(shù)特性和數(shù)列與函數(shù)的綜合,解題時(shí)要認(rèn)真審題,仔細(xì)解答,認(rèn)真分析,注意總結(jié),屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,放置的邊長為1的正三角形PAB沿 x軸滾動(dòng).設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),記f(x)的最小正周期為T;y=f(x)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積記為S,則S•T=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-
13
x3+2ax2-3a2x+1(0<a<1)
,
(Ⅰ)求函數(shù)f(x)的極大值;
(Ⅱ)記f(x)的導(dǎo)函數(shù)為g(x),若x∈[1-a,1+a]時(shí),恒有-a≤g(x)≤a成立,試確定實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式,記f0(x)的導(dǎo)函數(shù)f'0(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省江門、佛山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),記f(x)的導(dǎo)函數(shù)f'(x)=f1(x),f1(x)的導(dǎo)函數(shù)f'1(x)=f2(x),f2(x)的導(dǎo)函數(shù)f'2(x)=f3(x),…,fn-1(x)的導(dǎo)函數(shù)f'n-1(x)=fn(x),n=1,2,….
(1)求f3(0);
(2)用n表示fn(0);
(3)設(shè)Sn=f2(0)+f3(0)+…+fn+1(0),是否存在n∈N*使Sn最大?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案