對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有′拐點(diǎn)′;任何一個(gè)三次函數(shù)都有對稱中心,且‘拐點(diǎn)’就是對稱中心”.請你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3-3x2+3x的對稱中心為__________.
(1,1)
f′(x)=3x2-6x+3,f′′(x)=6x-6,
令6x-6=0得x=1.
因?yàn)閒(1)=1,
所以f(x)的對稱中心為(1,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小值;
(2)若,證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),在函數(shù)圖象上取不同兩點(diǎn)A、B,設(shè)線段AB的中點(diǎn)為,試探究函數(shù)在Q點(diǎn)處的切線與直線AB的位置關(guān)系?
(3)試判斷當(dāng)時(shí)圖象是否存在不同的兩點(diǎn)A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2012•廣東)曲線y=x3﹣x+3在點(diǎn)(1,3)處的切線方程為 _________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線上兩點(diǎn),若曲線上一點(diǎn)處的切線恰好平行于弦,則點(diǎn)的坐標(biāo)為(  )
A.(1,3)B.(3,3)C.(6,-12)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镽,f(-2)=2,對任意x∈R,xf′(x)>-f(x),則xf(x)<-4的解集為(   )
A.(-2,2)B.(-2,+∞)C.(-∞,-2)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列求導(dǎo)數(shù)運(yùn)算正確的是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案