(坐標(biāo)系與參數(shù)方程選做題)直線(xiàn)截圓為參數(shù))所得的弦長(zhǎng)為         .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=,曲線(xiàn)段DE上任一點(diǎn)到AB兩點(diǎn)的距離之和都相等.

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線(xiàn)段DE的方程;
(2)過(guò)C能否作一條直線(xiàn)與曲線(xiàn)段DE相交,且所
得弦以C為中點(diǎn),如果能,求該弦所在的直線(xiàn)
的方程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為為參數(shù))曲線(xiàn)C2的參數(shù)方程為,為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn)l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(1)分別說(shuō)明C1,C2是什么曲線(xiàn),并求出a與b的值;
(2)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為分別為曲線(xiàn)軸,軸的交點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程,并求出的極坐標(biāo);
(2)設(shè)的中點(diǎn)為,求直線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分10分) 選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)C1的極坐標(biāo)方程為,曲線(xiàn)C2的極坐標(biāo)方程為,曲線(xiàn)C1,C2相交于點(diǎn)A,B
(Ⅰ)將曲線(xiàn)C1,C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分12分)(學(xué)選修4-4的選做題1,沒(méi)學(xué)的選做題2)
題1:已知點(diǎn)M是橢圓C:+ =1上的任意一點(diǎn),直線(xiàn)l:x+2y-10=0.
(1)設(shè)x=3cosφ,φ為參數(shù),求橢圓C的參數(shù)方程;
(2)求點(diǎn)M到直線(xiàn)l距離的最大值與最小值.
題2:函數(shù)的一個(gè)零點(diǎn)是1,另一個(gè)零點(diǎn)在(-1,0)內(nèi),(1)求的取值范圍;
(2)求出的最大值或最小值,并用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)直線(xiàn)參數(shù)方程為為參數(shù)),則它的斜截式方程為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(請(qǐng)?jiān)谙铝袃深}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,直線(xiàn)的方程為,則點(diǎn)到直線(xiàn)的距離為           
B.(不等式選講選做題)若函數(shù),則不等式的解為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做)
在極坐標(biāo)系中,點(diǎn)到直線(xiàn)的距離為        

查看答案和解析>>

同步練習(xí)冊(cè)答案