10.已知函數(shù)f(x)=-cos2x-sinx+2.
(1)若x∈R,求f(x)的最大值與最小值;
(2)若x∈[-$\frac{π}{6}$,π],求f(x)的最大值與最小值.

分析 (1)令sinx=t,當(dāng)x∈R時(shí),t∈[-1,1],換元可得y=(t-$\frac{1}{2}$)2+$\frac{3}{4}$,由二次函數(shù)區(qū)間的最值可得;
(2)令sinx=t,當(dāng)x∈[-$\frac{π}{6}$,π]時(shí),t∈[-$\frac{1}{2}$,1],同(1)可得.

解答 解:(1)令sinx=t,當(dāng)x∈R時(shí),t∈[-1,1],
換元可得y=-cos2x-sinx+2=t2-t+1=(t-$\frac{1}{2}$)2+$\frac{3}{4}$,
由二次函數(shù)可知當(dāng)t=-1時(shí),函數(shù)取最大值3,
當(dāng)t=$\frac{1}{2}$時(shí),函數(shù)取最小值$\frac{3}{4}$;
(2)令sinx=t,當(dāng)x∈[-$\frac{π}{6}$,π]時(shí),t∈[-$\frac{1}{2}$,1],
換元可得y=-cos2x-sinx+2=t2-t+1=(t-$\frac{1}{2}$)2+$\frac{3}{4}$,
由二次函數(shù)可知當(dāng)t=-$\frac{1}{2}$時(shí),函數(shù)取最大值$\frac{7}{4}$,
當(dāng)t=$\frac{1}{2}$時(shí),函數(shù)取最小值$\frac{3}{4}$.

點(diǎn)評 本題考查三角函數(shù)的最值,換元并利用二次函數(shù)區(qū)間的最值是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y={log_{\frac{1}{2}}}(3x-2)$的定義域是(  )
A.$(\frac{2}{3},+∞)$B.(1,+∞)C.$[{\frac{2}{3},1}]$D.$(\frac{2}{3},\left.1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各函數(shù)中,為指數(shù)函數(shù)的是 (  )
A.y=3•2xB.y=x-2C.y=πxD.y=(-3)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=1+2cosx的值域是[-1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,點(diǎn)P(a,b)(a>b>0)為動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點(diǎn),已知△F1PF2為等腰三角形.
(1)求橢圓的離心率e.
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),且|AB|=$\frac{16}{5}$,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)是定義在R上的奇函數(shù),且y=f(2x-1)的周期為4,若f(1)=2.求f(2015)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),過點(diǎn)B(0,b)作圓x2+y2=$\frac{^{2}}{4}$的兩條切線BM、BN,切點(diǎn)分別為點(diǎn)M和N,若$\overrightarrow{BM}$•$\overrightarrow{BN}$=$\frac{3}{8}$,且該橢圓的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)F1、F2分別是橢圓C的左右焦點(diǎn),四個(gè)頂點(diǎn)都在橢圓C上的平行四邊形PQIJ的兩條對邊PQ、IJ分別經(jīng)過點(diǎn)F1、F2,求平行四邊形PQIJ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)隨機(jī)變量X的分布函數(shù)為F(x)=$\left\{\begin{array}{l}{0(x<-1)}\\{\frac{1}{8}(x=-1)}\\{ax+b(-1<x<1)}\\{1(x≥1)}\end{array}\right.$,又P{-1<X<1}=$\frac{5}{8}$,試確定實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖及尺寸如圖所示,其中主視圖、左視圖是等腰三角形,俯視圖是圓,則該幾何體的表面積為16π.

查看答案和解析>>

同步練習(xí)冊答案