設(shè)函數(shù)
(1)當(dāng)m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若且a3=32,求
(3)設(shè)n是正整數(shù),t為正實數(shù),實數(shù)t滿足f(n,1)=mnf(n,t),求證:
【答案】分析:(1)利用二項展開式的二項式系數(shù)的性質(zhì):展開式中中間項的二項式系數(shù)最大
(2)利用二項展開式的通項公式求出a3列出方程解得m,通過對y賦值1求出展開式的各項系數(shù)和
(3)利用已知等式求出m,t的關(guān)系,代入不等式的左邊利用二項式的展開式得到左邊>3,將m,t的關(guān)系代入右邊得證.
解答:解:(1)展開式中二項式系數(shù)最大的項是第4項=;
(2)
a3=C43m3=32⇒m=2,
;
(3)由f(n,1)=mnf(n,t)可得,
>1+2=3
,
所以原不等式成立.
點評:本題考查二項展開式的二項式系數(shù)的性質(zhì)、二項展開式的通項公式、賦值法求各項系數(shù)和、通過二項式的展開式放縮證不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(1)當(dāng)m=1,x>1時,求證:f(x)>0;
(2)若對于數(shù)學(xué)公式,均有f(x)<2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市二甲中學(xué)高三(上)9月抽測數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)
(1)當(dāng)m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若且a3=32,求;
(3)設(shè)n是正整數(shù),t為正實數(shù),實數(shù)t滿足f(n,1)=mnf(n,t),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南京市高三數(shù)學(xué)綜合訓(xùn)練試卷(11)(解析版) 題型:解答題

設(shè)函數(shù)
(1)當(dāng)m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若且a3=32,求;
(3)設(shè)n是正整數(shù),t為正實數(shù),實數(shù)t滿足f(n,1)=mnf(n,t),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省鹽城市建湖縣上岡高級中學(xué)高三最后一次訓(xùn)練數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)
(1)當(dāng)m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若且a3=32,求;
(3)設(shè)n是正整數(shù),t為正實數(shù),實數(shù)t滿足f(n,1)=mnf(n,t),求證:

查看答案和解析>>

同步練習(xí)冊答案